Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Even grade generic skew-symmetric matrix polynomials with bounded rank (2312.16672v1)

Published 27 Dec 2023 in math.RT, cs.NA, and math.NA

Abstract: We show that the set of $m \times m$ complex skew-symmetric matrix polynomials of even grade $d$, i.e., of degree at most $d$, and (normal) rank at most $2r$ is the closure of the single set of matrix polynomials with certain, explicitly described, complete eigenstructure. This complete eigenstructure corresponds to the most generic $m \times m$ complex skew-symmetric matrix polynomials of even grade $d$ and rank at most $2r$. The analogous problem for the case of skew-symmetric matrix polynomials of odd grade is solved in [Linear Algebra Appl., 536:1-18, 2018].

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. Quasi-triangularization of matrix polynomials over arbitrary fields. arXiv:2112.08229, 2021.
  2. Quasi-triangularization of matrix polynomials over arbitrary fields. Linear Algebra Appl., 665:61–106, 2023.
  3. E. Antoniou and S. Vologiannidis. A new family of companion forms of polynomial matrices. Electron. J. Linear Algebra, 11:78–87, 2004.
  4. L. Batzke. Generic rank-one perturbations of structured regular matrix pencils. Linear Algebra Appl., 458:638–670, 2014.
  5. L. Batzke. Sign characteristics of regular Hermitian matrix pencils under generic rank-1 perturbations and a certain class of generic rank-2 perturbations. Electron. J. Linear Algebra, 30:760–794, 2015.
  6. L. Batzke. Generic rank-two perturbations of structured regular matrix pencils. Oper. Matrices, 10(1):83–112, 2016.
  7. D. L. Boley. The algebraic structure of pencils and block Toeplitz matrices. Linear Algebra Appl., 279:255–279, 1998.
  8. F. De Terán. A geometric description of the sets of palindromic and alternating matrix pencils with bounded rank. SIAM J. Matrix Anal. Appl., 39(3):1116–1134, 2018.
  9. Generic symmetric matrix pencils with bounded rank. J. Spectr. Theory, 10:905–926, 2020.
  10. Generic symmetric matrix polynomials with bounded rank and fixed odd grade. SIAM J. Matrix Anal. Appl., 41:1033–1058, 2020.
  11. Generic eigenstructures of Hermitian pencils. To appear in SIAM J. Matrix Anal. Appl. (arXiv preprint arXiv:2209.10495), 2022.
  12. F. De Terán and F. M. Dopico. Low rank perturbation of Kronecker structures without full rank. SIAM J. Matrix Anal. Appl., 29(2):496–529, 2007.
  13. F. De Terán and F. M. Dopico. A note on generic Kronecker orbits of matrix pencils with fixed rank. SIAM J. Matrix Anal. Appl., 30(2):491–496, 2008.
  14. F. De Terán and F. M. Dopico. Low rank perturbation of regular matrix polynomials. Linear Algebra Appl., 430(1):579–586, 2009.
  15. F. De Terán and F. M. Dopico. Generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations. SIAM J. Matrix Anal. Appl., 37(3):823–835, 2016.
  16. An explicit description of the irreducible components of the set of matrix pencils with bounded normal rank. Linear Algebra Appl., 520:80–103, 2017.
  17. Fiedler companion linearizations and the recovery of minimal indices. SIAM J. Matrix Anal. Appl., 31(4):2181–2204, 2010.
  18. Spectral equivalence of matrix polynomials and the Index Sum Theorem. Linear Algebra Appl., 459:264–333, 2014.
  19. Low rank perturbation of Weierstrass structure. SIAM J. Matrix Anal. Appl., 30(2):538–547, 2008.
  20. Low-rank perturbation of regular matrix pencils with symmetry structures. Found. Comput. Math., 22(1):257–311, 2022.
  21. A. Dmytryshyn. Miniversal deformations of pairs of skew-symmetric matrices under congruence. Linear Algebra Appl., 506:506–534, 2016.
  22. A. Dmytryshyn. Structure preserving stratification of skew-symmetric matrix polynomials. Linear Algebra Appl., 532:266–286, 2017.
  23. A. Dmytryshyn and F. M. Dopico. Generic complete eigenstructures for sets of matrix polynomials with bounded rank and degree. Linear Algebra Appl., 535:213–230, 2017.
  24. A. Dmytryshyn and F. M. Dopico. Generic skew-symmetric matrix polynomials with fixed rank and fixed odd grade. Linear Algebra Appl., 536:1–18, 2018.
  25. Codimension computations of congruence orbits of matrices, symmetric and skew-symmetric matrix pencils using Matlab. Technical Report UMINF 13.18, Department of Computing Science, Umeå University, Sweden, 2013.
  26. Geometry of matrix polynomial spaces. Found. Comput. Math., 20:423–450, 2020.
  27. Canonical structure transitions of system pencils. SIAM J. Matrix Anal. Appl., 38(4):1249–1267, 2017.
  28. A. Dmytryshyn and B. Kågström. Orbit closure hierarchies of skew-symmetric matrix pencils. SIAM J. Matrix Anal. Appl., 35(4):1429–1443, 2014.
  29. Skew-symmetric matrix pencils: Codimension counts and the solution of a pair of matrix equations. Linear Algebra Appl., 438(8):3375–3396, 2013.
  30. A geometric approach to perturbation theory of matrices and matrix pencils. Part II: A stratification-enhanced staircase algorithm. SIAM J. Matrix Anal. Appl., 20(3):667–669, 1999.
  31. Stratification of controllability and observability pairs — Theory and use in applications. SIAM J. Matrix Anal. Appl., 31(2):203–226, 2009.
  32. G. D. Forney. Minimal bases of rational vector spaces with applications to multivariable linear systems. SIAM J. Control Optim., 13(3):493–520, 1975.
  33. F. R. Gantmacher. The Theory of Matrices, Vol. I and II (transl.). Chelsea, New York, 1959.
  34. N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2002.
  35. Solving singular generalized eigenvalue problems by a rank-completing perturbation. SIAM J. Matrix Anal. Appl., 40:1022–1046, 2019.
  36. Solving singular generalized eigenvalue problems. Part II: Projection and augmentation. SIAM Journal on Matrix Analysis and Applications, 44(4):1589–1618, 2023.
  37. Matrix Analysis. Cambridge University Press, Cambridge, second edition, 2013.
  38. Stratification of full rank polynomial matrices. Linear Algebra Appl., 439:1062–1090, 2013.
  39. T. Kailath. Linear Systems. Prentice Hall, New Jersey, 1980.
  40. Jordan structures of alternating matrix polynomials. Linear Algebra Appl., 432(4):867–891, 2010.
  41. Skew-symmetric matrix polynomials and their Smith forms. Linear Algebra Appl., 438(12):4625–4653, 2013.
  42. Parameter-dependent rank-one perturbations of singular Hermitian or symmetric pencils. SIAM J. Matrix Anal. Appl., 38(1):72–95, 2017.
  43. R. C. Thompson. Pencils of complex and real symmetric and skew matrices. Linear Algebra Appl., 147:323–371, 1991.
Citations (1)

Summary

We haven't generated a summary for this paper yet.