2000 character limit reached
Even grade generic skew-symmetric matrix polynomials with bounded rank (2312.16672v1)
Published 27 Dec 2023 in math.RT, cs.NA, and math.NA
Abstract: We show that the set of $m \times m$ complex skew-symmetric matrix polynomials of even grade $d$, i.e., of degree at most $d$, and (normal) rank at most $2r$ is the closure of the single set of matrix polynomials with certain, explicitly described, complete eigenstructure. This complete eigenstructure corresponds to the most generic $m \times m$ complex skew-symmetric matrix polynomials of even grade $d$ and rank at most $2r$. The analogous problem for the case of skew-symmetric matrix polynomials of odd grade is solved in [Linear Algebra Appl., 536:1-18, 2018].
- Quasi-triangularization of matrix polynomials over arbitrary fields. arXiv:2112.08229, 2021.
- Quasi-triangularization of matrix polynomials over arbitrary fields. Linear Algebra Appl., 665:61–106, 2023.
- E. Antoniou and S. Vologiannidis. A new family of companion forms of polynomial matrices. Electron. J. Linear Algebra, 11:78–87, 2004.
- L. Batzke. Generic rank-one perturbations of structured regular matrix pencils. Linear Algebra Appl., 458:638–670, 2014.
- L. Batzke. Sign characteristics of regular Hermitian matrix pencils under generic rank-1 perturbations and a certain class of generic rank-2 perturbations. Electron. J. Linear Algebra, 30:760–794, 2015.
- L. Batzke. Generic rank-two perturbations of structured regular matrix pencils. Oper. Matrices, 10(1):83–112, 2016.
- D. L. Boley. The algebraic structure of pencils and block Toeplitz matrices. Linear Algebra Appl., 279:255–279, 1998.
- F. De Terán. A geometric description of the sets of palindromic and alternating matrix pencils with bounded rank. SIAM J. Matrix Anal. Appl., 39(3):1116–1134, 2018.
- Generic symmetric matrix pencils with bounded rank. J. Spectr. Theory, 10:905–926, 2020.
- Generic symmetric matrix polynomials with bounded rank and fixed odd grade. SIAM J. Matrix Anal. Appl., 41:1033–1058, 2020.
- Generic eigenstructures of Hermitian pencils. To appear in SIAM J. Matrix Anal. Appl. (arXiv preprint arXiv:2209.10495), 2022.
- F. De Terán and F. M. Dopico. Low rank perturbation of Kronecker structures without full rank. SIAM J. Matrix Anal. Appl., 29(2):496–529, 2007.
- F. De Terán and F. M. Dopico. A note on generic Kronecker orbits of matrix pencils with fixed rank. SIAM J. Matrix Anal. Appl., 30(2):491–496, 2008.
- F. De Terán and F. M. Dopico. Low rank perturbation of regular matrix polynomials. Linear Algebra Appl., 430(1):579–586, 2009.
- F. De Terán and F. M. Dopico. Generic change of the partial multiplicities of regular matrix pencils under low-rank perturbations. SIAM J. Matrix Anal. Appl., 37(3):823–835, 2016.
- An explicit description of the irreducible components of the set of matrix pencils with bounded normal rank. Linear Algebra Appl., 520:80–103, 2017.
- Fiedler companion linearizations and the recovery of minimal indices. SIAM J. Matrix Anal. Appl., 31(4):2181–2204, 2010.
- Spectral equivalence of matrix polynomials and the Index Sum Theorem. Linear Algebra Appl., 459:264–333, 2014.
- Low rank perturbation of Weierstrass structure. SIAM J. Matrix Anal. Appl., 30(2):538–547, 2008.
- Low-rank perturbation of regular matrix pencils with symmetry structures. Found. Comput. Math., 22(1):257–311, 2022.
- A. Dmytryshyn. Miniversal deformations of pairs of skew-symmetric matrices under congruence. Linear Algebra Appl., 506:506–534, 2016.
- A. Dmytryshyn. Structure preserving stratification of skew-symmetric matrix polynomials. Linear Algebra Appl., 532:266–286, 2017.
- A. Dmytryshyn and F. M. Dopico. Generic complete eigenstructures for sets of matrix polynomials with bounded rank and degree. Linear Algebra Appl., 535:213–230, 2017.
- A. Dmytryshyn and F. M. Dopico. Generic skew-symmetric matrix polynomials with fixed rank and fixed odd grade. Linear Algebra Appl., 536:1–18, 2018.
- Codimension computations of congruence orbits of matrices, symmetric and skew-symmetric matrix pencils using Matlab. Technical Report UMINF 13.18, Department of Computing Science, Umeå University, Sweden, 2013.
- Geometry of matrix polynomial spaces. Found. Comput. Math., 20:423–450, 2020.
- Canonical structure transitions of system pencils. SIAM J. Matrix Anal. Appl., 38(4):1249–1267, 2017.
- A. Dmytryshyn and B. Kågström. Orbit closure hierarchies of skew-symmetric matrix pencils. SIAM J. Matrix Anal. Appl., 35(4):1429–1443, 2014.
- Skew-symmetric matrix pencils: Codimension counts and the solution of a pair of matrix equations. Linear Algebra Appl., 438(8):3375–3396, 2013.
- A geometric approach to perturbation theory of matrices and matrix pencils. Part II: A stratification-enhanced staircase algorithm. SIAM J. Matrix Anal. Appl., 20(3):667–669, 1999.
- Stratification of controllability and observability pairs — Theory and use in applications. SIAM J. Matrix Anal. Appl., 31(2):203–226, 2009.
- G. D. Forney. Minimal bases of rational vector spaces with applications to multivariable linear systems. SIAM J. Control Optim., 13(3):493–520, 1975.
- F. R. Gantmacher. The Theory of Matrices, Vol. I and II (transl.). Chelsea, New York, 1959.
- N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2002.
- Solving singular generalized eigenvalue problems by a rank-completing perturbation. SIAM J. Matrix Anal. Appl., 40:1022–1046, 2019.
- Solving singular generalized eigenvalue problems. Part II: Projection and augmentation. SIAM Journal on Matrix Analysis and Applications, 44(4):1589–1618, 2023.
- Matrix Analysis. Cambridge University Press, Cambridge, second edition, 2013.
- Stratification of full rank polynomial matrices. Linear Algebra Appl., 439:1062–1090, 2013.
- T. Kailath. Linear Systems. Prentice Hall, New Jersey, 1980.
- Jordan structures of alternating matrix polynomials. Linear Algebra Appl., 432(4):867–891, 2010.
- Skew-symmetric matrix polynomials and their Smith forms. Linear Algebra Appl., 438(12):4625–4653, 2013.
- Parameter-dependent rank-one perturbations of singular Hermitian or symmetric pencils. SIAM J. Matrix Anal. Appl., 38(1):72–95, 2017.
- R. C. Thompson. Pencils of complex and real symmetric and skew matrices. Linear Algebra Appl., 147:323–371, 1991.