Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Clustering Sets of Functional Data by Similarity in Law (2312.16656v1)

Published 27 Dec 2023 in stat.ME

Abstract: We introduce a new clustering method for the classification of functional data sets by their probabilistic law, that is, a procedure that aims to assign data sets to the same cluster if and only if the data were generated with the same underlying distribution. This method has the nice virtue of being non-supervised and non-parametric, allowing for exploratory investigation with few assumptions about the data. Rigorous finite bounds on the classification error are given along with an objective heuristic that consistently selects the best partition in a data-driven manner. Simulated data has been clustered with this procedure to show the performance of the method with different parametric model classes of functional data.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.