Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relationship between auditory and semantic entrainment using Deep Neural Networks (DNN) (2312.16599v1)

Published 27 Dec 2023 in cs.CL, cs.SD, and eess.AS

Abstract: The tendency of people to engage in similar, matching, or synchronized behaviour when interacting is known as entrainment. Many studies examined linguistic (syntactic and lexical structures) and paralinguistic (pitch, intensity) entrainment, but less attention was given to finding the relationship between them. In this study, we utilized state-of-the-art DNN embeddings such as BERT and TRIpLet Loss network (TRILL) vectors to extract features for measuring semantic and auditory similarities of turns within dialogues in two comparable spoken corpora of two different languages. We found people's tendency to entrain on semantic features more when compared to auditory features. Additionally, we found that entrainment in semantic and auditory linguistic features are positively correlated. The findings of this study might assist in implementing the mechanism of entrainment in human-machine interaction (HMI).

Citations (3)

Summary

We haven't generated a summary for this paper yet.