Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 33 tok/s Pro
GPT-4o 78 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 237 tok/s Pro
2000 character limit reached

2RV+HRV and Testing for Strong VS Full Dependence (2312.16332v1)

Published 26 Dec 2023 in math.ST, math.PR, and stat.TH

Abstract: Preferential attachment models of network growth are bivariate heavy tailed models for in- and out-degree with limit measures which either concentrate on a ray of positive slope from the origin or on all of the positive quadrant depending on whether the model includes reciprocity or not. Concentration on the ray is called full dependence. If there were a reliable way to distinguish full dependence from not-full, we would have guidance about which model to choose. This motivates investigating tests that distinguish between (i) full dependence; (ii) strong dependence (support of the limit measure is a proper subcone of the positive quadrant); (iii) weak dependence (limit measure concentrates on positive quadrant). We give two test statistics, analyze their asymptotically normal behavior under full and not-full dependence, and discuss applicability using bootstrap methods applied to simulated and real data.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.