A Comprehensive Study of Object Tracking in Low-Light Environments (2312.16250v2)
Abstract: Accurate object tracking in low-light environments is crucial, particularly in surveillance and ethology applications. However, achieving this is significantly challenging due to the poor quality of captured sequences. Factors such as noise, color imbalance, and low contrast contribute to these challenges. This paper presents a comprehensive study examining the impact of these distortions on automatic object trackers. Additionally, we propose a solution to enhance tracking performance by integrating denoising and low-light enhancement methods into the transformer-based object tracking system. Experimental results show that the proposed tracker, trained with low-light synthetic datasets, outperforms both the vanilla MixFormer and Siam R-CNN.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017) Cui et al. [2022] Cui, Y., Jiang, C., Wang, L., Wu, G.: Mixformer: End-to-end tracking with iterative mixed attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13608–13618 (2022) Voigtlaender et al. [2020] Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam r-cnn: Visual tracking by re-detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6578–6588 (2020) Wang et al. [2015] Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Cui, Y., Jiang, C., Wang, L., Wu, G.: Mixformer: End-to-end tracking with iterative mixed attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13608–13618 (2022) Voigtlaender et al. [2020] Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam r-cnn: Visual tracking by re-detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6578–6588 (2020) Wang et al. [2015] Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam r-cnn: Visual tracking by re-detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6578–6588 (2020) Wang et al. [2015] Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Cui, Y., Jiang, C., Wang, L., Wu, G.: Mixformer: End-to-end tracking with iterative mixed attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13608–13618 (2022) Voigtlaender et al. [2020] Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam r-cnn: Visual tracking by re-detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6578–6588 (2020) Wang et al. [2015] Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam r-cnn: Visual tracking by re-detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6578–6588 (2020) Wang et al. [2015] Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam r-cnn: Visual tracking by re-detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6578–6588 (2020) Wang et al. [2015] Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
- Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE