Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comprehensive Study of Object Tracking in Low-Light Environments (2312.16250v2)

Published 25 Dec 2023 in cs.CV

Abstract: Accurate object tracking in low-light environments is crucial, particularly in surveillance and ethology applications. However, achieving this is significantly challenging due to the poor quality of captured sequences. Factors such as noise, color imbalance, and low contrast contribute to these challenges. This paper presents a comprehensive study examining the impact of these distortions on automatic object trackers. Additionally, we propose a solution to enhance tracking performance by integrating denoising and low-light enhancement methods into the transformer-based object tracking system. Experimental results show that the proposed tracker, trained with low-light synthetic datasets, outperforms both the vanilla MixFormer and Siam R-CNN.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017) Cui et al. [2022] Cui, Y., Jiang, C., Wang, L., Wu, G.: Mixformer: End-to-end tracking with iterative mixed attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13608–13618 (2022) Voigtlaender et al. [2020] Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam r-cnn: Visual tracking by re-detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6578–6588 (2020) Wang et al. [2015] Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Cui, Y., Jiang, C., Wang, L., Wu, G.: Mixformer: End-to-end tracking with iterative mixed attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13608–13618 (2022) Voigtlaender et al. [2020] Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam r-cnn: Visual tracking by re-detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6578–6588 (2020) Wang et al. [2015] Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam r-cnn: Visual tracking by re-detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6578–6588 (2020) Wang et al. [2015] Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  2. Cui, Y., Jiang, C., Wang, L., Wu, G.: Mixformer: End-to-end tracking with iterative mixed attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13608–13618 (2022) Voigtlaender et al. [2020] Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam r-cnn: Visual tracking by re-detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6578–6588 (2020) Wang et al. [2015] Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam r-cnn: Visual tracking by re-detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6578–6588 (2020) Wang et al. [2015] Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  3. Voigtlaender, P., Luiten, J., Torr, P.H., Leibe, B.: Siam r-cnn: Visual tracking by re-detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6578–6588 (2020) Wang et al. [2015] Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  4. Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3119–3127 (2015) Bertinetto et al. [2016] Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  5. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.: Fully-convolutional siamese networks for object tracking. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part II 14, pp. 850–865 (2016). Springer Li et al. [2018] Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  6. Li, B., Yan, J., Wu, W., Zhu, Z., Hu, X.: High performance visual tracking with siamese region proposal network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8971–8980 (2018) Bhat et al. [2019] Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  7. Bhat, G., Danelljan, M., Gool, L.V., Timofte, R.: Learning discriminative model prediction for tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6182–6191 (2019) Carion et al. [2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  8. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 213–229 (2020). Springer Meinhardt et al. [2022] Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  9. Meinhardt, T., Kirillov, A., Leal-Taixe, L., Feichtenhofer, C.: Trackformer: Multi-object tracking with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8844–8854 (2022) Zeng et al. [2022] Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  10. Zeng, F., Dong, B., Zhang, Y., Wang, T., Zhang, X., Wei, Y.: Motr: End-to-end multiple-object tracking with transformer. In: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII, pp. 659–675 (2022). Springer Zhu et al. [2018] Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  11. Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 101–117 (2018) Choi et al. [2017] Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  12. Choi, J., Jin Chang, H., Yun, S., Fischer, T., Demiris, Y., Young Choi, J.: Attentional correlation filter network for adaptive visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4807–4816 (2017) Xu et al. [2022] Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  13. Xu, X., Wang, R., Fu, C.-W., Jia, J.: Snr-aware low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17693–17703 (2022). https://doi.org/10.1109/CVPR52688.2022.01719 Ma et al. [2022] Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  14. Ma, L., Ma, T., Liu, R., Fan, X., Luo, Z.: Toward fast, flexible, and robust low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5637–5646 (2022) Wu et al. [2022] Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  15. Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5891–5900 (2022). https://doi.org/10.1109/CVPR52688.2022.00581 Zhou et al. [2022] Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  16. Zhou, K., Li, W., Lu, L., Han, X., Lu, J.: Revisiting temporal alignment for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2022) Triantafyllidou et al. [2020] Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  17. Triantafyllidou, D., Moran, S., McDonagh, S., Parisot, S., Slabaugh, G.: Low light video enhancement using synthetic data produced with an intermediate domain mapping. In: European Conference on Computer Vision, pp. 103–119 (2020). Springer Anantrasirichai and Bull [2021] Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  18. Anantrasirichai, N., Bull, D.: Contextual colorization and denoising for low-light ultra high resolution sequences. In: ICIP Proc., pp. 1614–1618 (2021) Zhang et al. [2017] Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  19. Zhang, K., Zuo, W., Zhang, L.: Denoising prior driven convolutional neural network for image restoration. IEEE Transactions on Image Processing 26(7), 3142–3155 (2017) Guo et al. [2018] Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  20. Guo, C., Deng, C., Yue, H., Chen, F.: Real-world blind image denoising with deep networks: A noise adaptation layer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1802–1808 (2018) Malyugina et al. [2023] Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  21. Malyugina, A., Anantrasirichai, N., Bull, D.: A topological loss function for image denoising on a new bvi-lowlight dataset. Signal Processing 211 (2023) https://doi.org/10.1016/j.sigpro.2023.109081 Fan et al. [2022] Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  22. Fan, C.-M., Liu, T.-J., Liu, K.-H.: Sunet: swin transformer unet for image denoising. In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2333–2337 (2022). IEEE Jiang et al. [2021] Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  23. Jiang, Y., Gong, X., Liu, D., Cheng, Y., Fang, C., Shen, X., Yang, J., Zhou, P., Wang, Z.: Enlightengan: Deep light enhancement without paired supervision. IEEE Transactions on Image Processing 30, 2340–2349 (2021) Rezatofighi et al. [2019] Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  24. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019) Huang et al. [2021] Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  25. Huang, L., Zhao, X., Huang, K.: Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Transactions on Pattern Analysis and Machine Intelligence 43(5), 1562–1577 (2021) https://doi.org/10.1109/TPAMI.2019.2957464 Anantrasirichai et al. [2015] Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  26. Anantrasirichai, N., Burn, J., Bull, D.R.: Robust texture features based on undecimated dual-tree complex wavelets and local magnitude binary patterns. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3957–3961 (2015). https://doi.org/10.1109/ICIP.2015.7351548 Szeliski [2022] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  27. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, ??? (2022) Yilmaz et al. [2006] Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  28. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. Acm computing surveys (CSUR) 38(4), 13 (2006) Kalal et al. [2010] Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
  29. Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010). IEEE
Citations (5)

Summary

  • The paper introduces an enhanced MixFormer tracker that integrates denoising and luminance adjustment techniques to overcome low-light challenges.
  • It incorporates SUNet and EnlightenGAN as preprocessing steps, optimizing training conditions with specific noise (25) and gamma (0.3) parameters.
  • Experimental results show improved IoU, AUC, and precision, outperforming Siam R-CNN in low-light environments and suggesting robust future applications.

A Comprehensive Study of Object Tracking in Low-Light Environments

Object tracking in low-light settings is a highly challenging yet indispensable task in varied applications such as surveillance and ethology. The paper "A Comprehensive Study of Object Tracking in Low-Light Environments" tackles the distinct difficulties posed by these environments, notably noise, color imbalance, and low contrast, and proposes solutions that incorporate denoising and low-light enhancement methodologies within a transformer-based tracking framework.

Methodological Contributions

The paper primarily employs the MixFormer, a state-of-the-art transformer-based tracking model, which offers a unified architecture for feature extraction and target information integration. Unlike traditional trackers, MixFormer seeks efficiency and integration through its Mixed Attention Modules (MAMs), which apply self and cross-attention mechanisms to capture specific and interrelated features of the target and search areas, respectively. This architecture is adept at processing global and local contextual information, essential for robust tracking under varying conditions.

To specifically tackle low-light challenges, this paper enhances MixFormer by incorporating preprocessing methods. The chosen methodologies for preprocessing are SUNet, a denoising technique leveraging the Swin Transformer structure, and EnlightenGAN, a GAN-based luminance enhancement model. These methods aim to rectify distortions inherent in low-light video sequences significantly before feeding them into the tracking architecture.

Experimental Framework

The paper leverages the GOT-10K dataset, amping its diversity by generating synthetic low-light conditions through controlled parameter adjustments, including noise (via Gaussian scaling), gamma corrections, and saturation tweaking. By systematically altering these parameters, the research assesses the tracker's robustness against various distortions and identifies optimal conditions for enhancing tracking accuracy.

The experimental results demonstrate persistent performance improvements in trackers trained on synthetic low-light datasets compared to those trained on standard daylight sets. In particular, a noise level of 25 and a gamma value of 0.3 have been pinpointed as providing optimal training conditions to enhance tracking resilience across diverse scenarios.

Performance Analysis and Comparisons

The paper compares the enhanced MixFormer against the Siam R-CNN, highlighting its superiority in handling low-light distortions. Performance metrics, including Intersection over Union (IoU), Area Under the Curve (AUC), and precision measures, display MixFormer's adeptness in maintaining higher accuracy rates, even under increased observational challenges such as noise and reduced visibility.

Through meticulous analysis, it becomes clear that noise presents the greatest hindrance in low-light tracking, followed by gamma-induced brightness issues. Denoising strategies emerge as particularly beneficial, with preprocessing improvements yielding significant boosts in tracking precision and accuracy metrics. Furthermore, when applied collectively during the training and testing phases, these preprocessing methods offer the most substantial enhancements.

Implications and Future Directions

This paper proposes a robust approach to enhancing visual tracking in low-light conditions through innovative preprocessing integrations and adaptive training regimes. By systematically dissecting the various factors contributing to tracking deficiencies, the research underscores the importance of tailored, dataset-specific preprocessing techniques in optimizing model performance.

In future explorations, expanding the scope of synthetic enhancements to incorporate varied real-world sensor noise models and further refining temporal modeling techniques could yield even more effective tracking methodologies. Additionally, integrating real-time adaptability to changing lighting conditions remains a compelling avenue for evolving the tracker's effectiveness in dynamic, uncontrolled environments.

Through its extensive examination and solution-oriented approach, this paper provides a strong foundation upon which future exploration and more refined techniques in low-light object tracking can be modeled and developed.