Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bulk reconstruction using timelike entanglement in (A)dS (2312.16056v3)

Published 26 Dec 2023 in hep-th and gr-qc

Abstract: It is well-known that the entanglement entropies for spacelike subregions, and the associated modular Hamiltonians play a crucial role in the bulk reconstruction program within Anti de-Sitter (AdS) holography. Explicit examples of HKLL map exist mostly for the cases where the emergent bulk region is the so-called entanglement wedge of the given boundary subregion. However, motivated from the complex pseudo-entropy in Euclidean conformal field theories (CFT), one can talk about a timelike entanglement' in Lorentzian CFTs dual to AdS spacetimes. One can then utilize this boundary timelike entanglement to define a boundarytimelike modular Hamiltonian'. We use constraints involving these Hamiltonians in a manner similar to how it was used for spacelike cases, and write down bulk operators in regions which are not probed by an RT surface corresponding to a single CFT. In the context of two dimensional CFT, we re-derive the HKLL formulas for free bulk scalar fields in three examples: in AdS Poincar\'{e} patch, inside and outside of the AdS black hole, and for de Sitter flat slicings. In this method, one no longer requires the knowledge of bulk dynamics for sub-horizon holography.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. E. Witten, “APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory,” Rev. Mod. Phys. 90 no. 4, (2018) 045003, arXiv:1803.04993 [hep-th].
  2. A. Hamilton, D. N. Kabat, G. Lifschytz, and D. A. Lowe, “Local bulk operators in AdS/CFT: A Boundary view of horizons and locality,” Phys. Rev. D 73 (2006) 086003, arXiv:hep-th/0506118.
  3. A. Hamilton, D. N. Kabat, G. Lifschytz, and D. A. Lowe, “Holographic representation of local bulk operators,” Phys. Rev. D 74 (2006) 066009, arXiv:hep-th/0606141.
  4. A. Hamilton, D. N. Kabat, G. Lifschytz, and D. A. Lowe, “Local bulk operators in AdS/CFT: A Holographic description of the black hole interior,” Phys. Rev. D 75 (2007) 106001, arXiv:hep-th/0612053. [Erratum: Phys.Rev.D 75, 129902 (2007)].
  5. D. Kabat, G. Lifschytz, S. Roy, and D. Sarkar, “Holographic representation of bulk fields with spin in AdS/CFT,” Phys. Rev. D 86 (2012) 026004, arXiv:1204.0126 [hep-th].
  6. D. Sarkar and X. Xiao, “Holographic Representation of Higher Spin Gauge Fields,” Phys. Rev. D 91 no. 8, (2015) 086004, arXiv:1411.4657 [hep-th].
  7. S. R. Roy and D. Sarkar, “Hologram of a pure state black hole,” Phys. Rev. D 92 (2015) 126003, arXiv:1505.03895 [hep-th].
  8. B. Bhattacharjee, C. Krishnan, and D. Sarkar, “HKLL for the non-normalizable mode,” JHEP 12 (2022) 075, arXiv:2209.01130 [hep-th].
  9. X. Xiao, “Holographic representation of local operators in de sitter space,” Phys. Rev. D 90 no. 2, (2014) 024061, arXiv:1402.7080 [hep-th].
  10. D. Sarkar, “(A)dS holography with a cutoff,” Phys. Rev. D 90 no. 8, (2014) 086005, arXiv:1408.0415 [hep-th].
  11. D. Kabat and G. Lifschytz, “Local bulk physics from intersecting modular Hamiltonians,” JHEP 06 (2017) 120, arXiv:1703.06523 [hep-th].
  12. D. Kabat and G. Lifschytz, “Emergence of spacetime from the algebra of total modular Hamiltonians,” JHEP 05 (2019) 017, arXiv:1812.02915 [hep-th].
  13. T. Faulkner and A. Lewkowycz, “Bulk locality from modular flow,” JHEP 07 (2017) 151, arXiv:1704.05464 [hep-th].
  14. T. Faulkner, M. Li, and H. Wang, “A modular toolkit for bulk reconstruction,” JHEP 04 (2019) 119, arXiv:1806.10560 [hep-th].
  15. S. R. Roy and D. Sarkar, “Bulk metric reconstruction from boundary entanglement,” Phys. Rev. D 98 no. 6, (2018) 066017, arXiv:1801.07280 [hep-th].
  16. D. L. Jafferis, A. Lewkowycz, J. Maldacena, and S. J. Suh, “Relative entropy equals bulk relative entropy,” JHEP 06 (2016) 004, arXiv:1512.06431 [hep-th].
  17. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96 (2006) 181602, arXiv:hep-th/0603001.
  18. J. M. Maldacena, “Eternal black holes in anti-de Sitter,” JHEP 04 (2003) 021, arXiv:hep-th/0106112.
  19. M. Banados, C. Teitelboim, and J. Zanelli, “The Black hole in three-dimensional space-time,” Phys. Rev. Lett. 69 (1992) 1849–1851, arXiv:hep-th/9204099.
  20. Y. Nakata, T. Takayanagi, Y. Taki, K. Tamaoka, and Z. Wei, “New holographic generalization of entanglement entropy,” Phys. Rev. D 103 no. 2, (2021) 026005, arXiv:2005.13801 [hep-th].
  21. K. Doi, J. Harper, A. Mollabashi, T. Takayanagi, and Y. Taki, “Pseudoentropy in dS/CFT and Timelike Entanglement Entropy,” Phys. Rev. Lett. 130 no. 3, (2023) 031601, arXiv:2210.09457 [hep-th].
  22. K. Narayan, “de Sitter space, extremal surfaces, and time entanglement,” Phys. Rev. D 107 no. 12, (2023) 126004, arXiv:2210.12963 [hep-th].
  23. Z. Li, Z.-Q. Xiao, and R.-Q. Yang, “On holographic time-like entanglement entropy,” JHEP 04 (2023) 004, arXiv:2211.14883 [hep-th].
  24. K. Doi, J. Harper, A. Mollabashi, T. Takayanagi, and Y. Taki, “Timelike entanglement entropy,” JHEP 05 (2023) 052, arXiv:2302.11695 [hep-th].
  25. K. Narayan, “Comments on de Sitter space, extremal surfaces and time entanglement,” arXiv:2310.00320 [hep-th].
  26. J. Cardy and E. Tonni, “Entanglement hamiltonians in two-dimensional conformal field theory,” J. Stat. Mech. 1612 no. 12, (2016) 123103, arXiv:1608.01283 [cond-mat.stat-mech].
  27. G. Wong, I. Klich, L. A. Pando Zayas, and D. Vaman, “Entanglement Temperature and Entanglement Entropy of Excited States,” JHEP 12 (2013) 020, arXiv:1305.3291 [hep-th].
  28. J. J. Bisognano and E. H. Wichmann, “On the Duality Condition for Quantum Fields,” J. Math. Phys. 17 (1976) 303–321.
  29. H. Casini, M. Huerta, and R. C. Myers, “Towards a derivation of holographic entanglement entropy,” JHEP 05 (2011) 036, arXiv:1102.0440 [hep-th].
  30. X. Dong, D. Harlow, and A. C. Wall, “Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality,” Phys. Rev. Lett. 117 no. 2, (2016) 021601, arXiv:1601.05416 [hep-th].
  31. J.-W. Kim, “Explicit reconstruction of the entanglement wedge,” JHEP 01 (2017) 131, arXiv:1607.03605 [hep-th].
  32. N. Bao, A. Chatwin-Davies, B. E. Niehoff, and M. Usatyuk, “Bulk Reconstruction Beyond the Entanglement Wedge,” Phys. Rev. D 101 no. 6, (2020) 066011, arXiv:1911.00519 [hep-th].
  33. D. L. Jafferis and L. Lamprou, “Inside the hologram: reconstructing the bulk observer’s experience,” JHEP 03 (2022) 084, arXiv:2009.04476 [hep-th].
  34. J. de Boer, D. L. Jafferis, and L. Lamprou, “On black hole interior reconstruction, singularities and the emergence of time,” arXiv:2211.16512 [hep-th].
  35. T. Hartman and J. Maldacena, “Time Evolution of Entanglement Entropy from Black Hole Interiors,” JHEP 05 (2013) 014, arXiv:1303.1080 [hep-th].
  36. Springer, 2017. arXiv:1609.01287 [hep-th].
  37. L. Fidkowski, V. Hubeny, M. Kleban, and S. Shenker, “The Black hole singularity in AdS / CFT,” JHEP 02 (2004) 014, arXiv:hep-th/0306170.
  38. N. Lashkari, H. Liu, and S. Rajagopal, “Modular Flow of Excited States,” arXiv:1811.05052 [hep-th].
  39. J. de Boer, F. M. Haehl, M. P. Heller, and R. C. Myers, “Entanglement, holography and causal diamonds,” JHEP 08 (2016) 162, arXiv:1606.03307 [hep-th].
  40. B. Czech, J. De Boer, D. Ge, and L. Lamprou, “A modular sewing kit for entanglement wedges,” JHEP 11 (2019) 094, arXiv:1903.04493 [hep-th].
  41. S. Banerjee, M. Dorband, J. Erdmenger, R. Meyer, and A.-L. Weigel, “Berry phases, wormholes and factorization in AdS/CFT,” JHEP 08 (2022) 162, arXiv:2202.11717 [hep-th].
  42. V. Balasubramanian, P. Kraus, and A. E. Lawrence, “Bulk versus boundary dynamics in anti-de Sitter space-time,” Phys. Rev. D 59 (1999) 046003, arXiv:hep-th/9805171.
  43. E. Keski-Vakkuri, “Bulk and boundary dynamics in BTZ black holes,” Phys. Rev. D 59 (1999) 104001, arXiv:hep-th/9808037.
  44. S. Das and B. Ezhuthachan, “Spectrum of Modular Hamiltonian in the Vacuum and Excited States,” JHEP 10 (2019) 009, arXiv:1906.00726 [hep-th].
  45. S. Das, B. Ezhuthachan, S. Porey, and B. Roy, “Virasoro algebras, kinematic space and the spectrum of modular Hamiltonians in CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” JHEP 21 (2020) 123, arXiv:2101.10211 [hep-th].
  46. Springer Verlag, 1992.
  47. H. J. Borchers, “On revolutionizing quantum field theory with Tomita’s modular theory,” J. Math. Phys. 41 (2000) 3604–3673.
  48. S. J. Summers, “Tomita-Takesaki modular theory,” arXiv:math-ph/0511034.
Citations (7)

Summary

We haven't generated a summary for this paper yet.