Pattern Avoidance for Fibonacci Sequences using $k$-Regular Words (2312.16052v1)
Abstract: Two $k$-ary Fibonacci recurrences are $a_k(n) = a_k(n-1) + k \cdot a_k(n-2)$ and $b_k(n) = k \cdot b_k(n-1) + b_k(n-2)$. We provide a simple proof that $a_k(n)$ is the number of $k$-regular words over $[n] = {1,2,\ldots,n}$ that avoid patterns ${121, 123, 132, 213}$ when using base cases $a_k(0) = a_k(1) = 1$ for any $k \geq 1$. This was previously proven by Kuba and Panholzer in the context of Wilf-equivalence for restricted Stirling permutations, and it creates Simion and Schmidt's classic result on the Fibonacci sequence when $k=1$, and the Jacobsthal sequence when $k=2$. We complement this theorem by proving that $b_k(n)$ is the number of $k$-regular words over $[n]$ that avoid ${122, 213}$ with $b_k(0) = b_k(1) = 1$ for any~$k \geq 2$. Finally, we conjecture that $|Av{2}_{n}(\underline{121}, 123, 132, 213)| = a_1(n)2$ for $n \geq 0$. That is, vincularizing the Stirling pattern in Kuba and Panholzer's Jacobsthal result gives the Fibonacci-squared numbers.
- From Fibonacci to Catalan permutations. arXiv preprint math/0612277, 2006.
- J.-L. Baril. Classical sequences revisited with permutations avoiding dotted pattern. the electronic journal of combinatorics, pages P178–P178, 2011.
- Enumeration of Łukasiewicz paths modulo some patterns. Discrete Mathematics, 342(4):997–1005, 2019.
- D. Bevan. Permutation patterns: basic definitions and notation. arXiv preprint arXiv:1506.06673, 2015.
- N. Bonichon and P.-J. Morel. Baxter d𝑑ditalic_d-permutations and other pattern-avoiding classes. Journal of Integer Sequences, 25(2):3, 2022a.
- N. Bonichon and P.-J. Morel. Baxter d𝑑ditalic_d-permutations and other pattern avoiding classes. arXiv preprint arXiv:2202.12677, 2022b.
- Pattern avoidance in double lists. Involve, a Journal of Mathematics, 10(3):379–398, 2016.
- J. Curran. multicool, 2023. URL https://cran.r-project.org/web/packages/multicool/index.html.
- C. Defant and N. Kravitz. Stack-sorting for words. Australasian Journal of Combinatorics, 77(1):51–68, 2020.
- E. S. Egge and T. Mansour. 231-Avoiding involutions and Fibonacci numbers. AUSTRALASIAN JOURNAL OF COMBINATORICS, 30:75–84, 2004.
- S. Falcón and Á. Plaza. On the Fibonacci k-numbers. Chaos, Solitons & Fractals, 32(5):1615–1624, 2007.
- S. Gao and K.-H. Chen. Tackling sequences from prudent self-avoiding walks. In Proceedings of the International Conference on Foundations of Computer Science (FCS), page 1. The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), 2014.
- S. Gao and H. Niederhausen. Sequences arising from prudent self-avoiding walks. Submitted to INTEGERS: The Electronic Journal of Combinatorial Number Theory, 2011.
- I. Gessel and R. P. Stanley. Stirling polynomials. Journal of Combinatorial Theory, Series A, 24(1):24–33, 1978.
- Star transposition Gray codes for multiset permutations. Journal of Graph Theory, 103(2):212–270, 2023.
- Generalized Fibonacci Sequences. Theoretical Mathematics and Applications, 2(2):115–124, 2012.
- Exhaustive generation of pattern-avoiding permutations. In Proceedings of the 17th International Conference on Permutation Patterns, pages 81–83, 2019.
- Combinatorial generation via permutation languages. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1214–1225. SIAM, 2020.
- Combinatorial generation via permutation languages. i. fundamentals. Transactions of the American Mathematical Society, 375(4):2255–2291, 2022.
- O. F. Inc. Fibonacci numbers, Entry A000045 in the On-line Encyclopedia of Integer Sequences. https://oeis.org/A000045, 2023a. Accessed on August 30 2023.
- O. F. Inc. Jacobsthal sequence, Entry A001045 in the On-line Encyclopedia of Integer Sequences. https://oeis.org/A001045, 2023b. Accessed on August 30 2023.
- Generalized Stirling permutations, families of increasing trees and urn models. Journal of Combinatorial Theory, Series A, 118(1):94–114, 2011.
- D. Kalman and R. Mena. The Fibonacci numbers—exposed. Mathematics magazine, 76(3):167–181, 2003.
- D. E. Knuth. The Art of Computer Programming, Vol 1: Fundamental Algorithms. Algorithms. Reading, MA: Addison-Wesley, 1968.
- D. E. Knuth. The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, part 1. Pearson Education India, 2011.
- M. Kuba and A. Panholzer. Enumeration formulae for pattern restricted Stirling permutations. Discrete Mathematics, 312(21):3179–3194, 2012.
- M. Kuba and A. Panholzer. Stirling permutations containing a single pattern of length three. Australas. J Comb., 74:216–239, 2019.
- P. A. MacMahon. Combinatory analysis: By Percy A. Macmahon, volume 1. CUP Archive, 1915.
- P. A. MacMahon. Combinatory analysis, volumes I and II, volume 1. American Mathematical Soc., 2001.
- T. Mansour and A. Robertson. Refined restricted permutations avoiding subsets of patterns of length three. Annals of Combinatorics, 6(3):407–418, 2002.
- T. Mütze. Proof of the middle levels conjecture. Proceedings of the London Mathematical Society, 112(4):677–713, 2016.
- T. Mütze. Cos++. the combinatorial object server, 2023a. URL http://combos.org.
- T. Mütze. A book proof of the middle levels theorem. Combinatorica, 2023b.
- OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2023. Published electronically at http://oeis.org.
- J. Pantone. Permpy, 2023. URL https://github.com/engenmt/permpy.
- Y. Panwar. A note on the generalized k-Fibonacci sequence. NATURENGS, 2(2):29–39, 2021.
- S. Park. The r-multipermutations. Journal of Combinatorial Theory, Series A, 67(1):44–71, 1994.
- X. S. Shen and A. Williams. A k-ary middle levels conjecture. In Proceedings of the 23rd Thailand-Japan Conference on Discrete and Computational Geometry, Graphs, and Games, 2021.
- R. Simion and F. W. Schmidt. Restricted permutations. European Journal of Combinatorics, 6(4):383–406, 1985.
- N. Sun. On d𝑑ditalic_d-permutations and pattern avoidance classes. arXiv preprint arXiv:2208.08506, 2022.
- B. Tenner. Database of permutation pattern avoidance, 2023. URL https://math.depaul.edu/~bridget/patterns.html.
- A. Williams. Loopless generation of multiset permutations using a constant number of variables by prefix shifts. In Proceedings of the twentieth annual ACM-SIAM symposium on discrete algorithms, pages 987–996. SIAM, 2009.
- A. Williams. fibonacci-words. https://gitlab.com/combinatronics/fibonacci-words, 2023a.
- A. Williams. Pattern Avoidance for k-Catalan Sequences. In Proceedings of the 21st International Conference on Permutation Patterns, pages 147–149, 2023b.