Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Generative Framework for Realistic Lidar Simulation in Autonomous Driving Systems (2312.15817v2)

Published 25 Dec 2023 in cs.CV, cs.LG, cs.RO, and eess.IV

Abstract: Simulation models for perception sensors are integral components of automotive simulators used for the virtual Verification and Validation (V&V) of Autonomous Driving Systems (ADS). These models also serve as powerful tools for generating synthetic datasets to train deep learning-based perception models. Lidar is a widely used sensor type among the perception sensors for ADS due to its high precision in 3D environment scanning. However, developing realistic Lidar simulation models is a significant technical challenge. In particular, unrealistic models can result in a large gap between the synthesised and real-world point clouds, limiting their effectiveness in ADS applications. Recently, deep generative models have emerged as promising solutions to synthesise realistic sensory data. However, for Lidar simulation, deep generative models have been primarily hybridised with conventional algorithms, leaving unified generative approaches largely unexplored in the literature. Motivated by this research gap, we propose a unified generative framework to enhance Lidar simulation fidelity. Our proposed framework projects Lidar point clouds into depth-reflectance images via a lossless transformation, and employs our novel Controllable Lidar point cloud Generative model, CoLiGen, to translate the images. We extensively evaluate our CoLiGen model, comparing it with the state-of-the-art image-to-image translation models using various metrics to assess the realness, faithfulness, and performance of a downstream perception model. Our results show that CoLiGen exhibits superior performance across most metrics. The dataset and source code for this research are available at https://github.com/hamedhaghighi/CoLiGen.git.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. T. Sun, M. Segu, J. Postels, Y. Wang, L. Van Gool, B. Schiele, F. Tombari, and F. Yu, “SHIFT: a synthetic driving dataset for continuous multi-task domain adaptation,” in Computer Vision and Pattern Recognition, 2022.
  2. F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic review of perception system and simulators for autonomous vehicles research,” Sensors, vol. 19, no. 3, 2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/3/648
  3. A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, S. Lee, M. Savva, S. Chernova, and D. Batra, “Sim2real predictivity: Does evaluation in simulation predict real-world performance?” IEEE Robotics and Automation Letters, vol. 5, pp. 6670–6677, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:221082834
  4. A. Elmquist and D. Negrut, “Modeling cameras for autonomous vehicle and robot simulation: An overview,” IEEE Sensors Journal, vol. 21, no. 22, pp. 25 547–25 560, 2021.
  5. L. T. Triess, M. Dreissig, C. B. Rist, and J. M. Zöllner, “A survey on deep domain adaptation for lidar perception,” 2021 IEEE Intelligent Vehicles Symposium Workshops (IV Workshops), pp. 350–357, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:235352671
  6. P. Vacek, O. Jašek, K. Zimmermann, and T. Svoboda, “Learning to predict lidar intensities,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 4, pp. 3556–3564, 2022.
  7. A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI dataset,” International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237, sep 2013.
  8. A. Dosovitskiy, G. Ros, F. Codevilla, A. López, and V. Koltun, “CARLA: An Open Urban Driving Simulator,” Tech. Rep., oct 2017.
  9. K. Saleh, A. Abobakr, M. Attia, J. Iskander, D. Nahavandi, and M. Hossny, “Domain adaptation for vehicle detection from bird’s eye view lidar point cloud data,” 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3235–3242, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:162168643
  10. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2242–2251.
  11. T. Park, A. A. Efros, R. Zhang, and J.-Y. Zhu, “Contrastive learning for unpaired image-to-image translation,” in European Conference on Computer Vision, 2020.
  12. A. Bora, E. Price, and A. G. Dimakis, “Ambientgan: Generative models from lossy measurements,” in International Conference on Learning Representations, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:3481010
  13. E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax.” CoRR, vol. abs/1611.01144, 2016. [Online]. Available: http://dblp.uni-trier.de/db/journals/corr/corr1611.html#JangGP16
  14. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium,” Advances in Neural Information Processing Systems, vol. 2017-December, pp. 6627–6638, jun 2017.
  15. B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer, “Squeezesegv2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud,” Proceedings - IEEE International Conference on Robotics and Automation, vol. 2019-May, pp. 4376–4382, 9 2018.
  16. B. Guillard, S. Vemprala, J. K. Gupta, O. Miksik, V. Vineet, P. Fua, and A. Kapoor, “Learning to simulate realistic lidars,” 2022.
  17. S. Zhao, Y. Wang, B. Li, B. Wu, Y. Gao, P. Xu, T. Darrell, and K. Keutzer, “epointda: An end-to-end simulation-to-real domain adaptation framework for lidar point cloud segmentation,” in AAAI Conference on Artificial Intelligence, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:221534728
  18. S. Manivasagam, S. Wang, K. Wong, W. Zeng, M. Sazanovich, S. Tan, B. Yang, W. C. Ma, and R. Urtasun, “LiDARsim: Realistic LiDAR simulation by leveraging the real world,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.   IEEE Computer Society, jun 2020, pp. 11 164–11 173.
  19. A. E. Sallab, I. Sobh, M. Zahran, and M. Shawky, “Unsupervised Neural Sensor Models for Synthetic LiDAR Data Augmentation,” arXiv, nov 2019.
  20. B. Hurl, K. Czarnecki, and S. Waslander, “Precise synthetic image and lidar (presil) dataset for autonomous vehicle perception,” in 2019 IEEE Intelligent Vehicles Symposium (IV).   IEEE Press, 2019, p. 2522–2529. [Online]. Available: https://doi.org/10.1109/IVS.2019.8813809
  21. X. Weng, Y. Man, J. Park, Y. Yuan, D. Cheng, M. O’Toole, and K. Kitani, “All-In-One Drive: A Large-Scale Comprehensive Perception Dataset with High-Density Long-Range Point Clouds,” arXiv, 2021.
  22. A. Alotaibi, “Deep generative adversarial networks for image-to-image translation: A review,” Symmetry, vol. 12, no. 10, p. 1705, 2020.
  23. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, ser. NIPS’14.   Cambridge, MA, USA: MIT Press, 2014, p. 2672–2680.
  24. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9351.   Springer Verlag, 2015, pp. 234–241.
  25. H. Fu, M. Gong, C. Wang, K. Batmanghelich, K. Zhang, and D. Tao, “Geometry-consistent generative adversarial networks for one-sided unsupervised domain mapping,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2422–2431.
  26. J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall, “Semantickitti: A dataset for semantic scene understanding of lidar sequences,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9297–9307.
  27. ——, “SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences,” in Proc. of the IEEE/CVF International Conf. on Computer Vision (ICCV), 2019.
  28. Y. Pan, B. Gao, J. Mei, S. Geng, C. Li, and H. Zhao, “Semanticposs: A point cloud dataset with large quantity of dynamic instances,” 2020.
  29. V. Zyrianov, X. Zhu, and S. Wang, “Generate realistic lidar point clouds,” in Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXIII.   Berlin, Heidelberg: Springer-Verlag, 2022, p. 17–35. [Online]. Available: https://doi.org/10.1007/978-3-031-20050-2_2
  30. L. Caccia, H. van Hoof, A. C. Courville, and J. Pineau, “Deep generative modeling of lidar data,” 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5034–5040, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:54445260
  31. T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved quality, stability, and variation,” ArXiv, vol. abs/1710.10196, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:3568073
  32. A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “Rangenet ++: Fast and accurate lidar semantic segmentation,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019, pp. 4213–4220.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hamed Haghighi (4 papers)
  2. Mehrdad Dianati (36 papers)
  3. Kurt Debattista (21 papers)
  4. Valentina Donzella (5 papers)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub