Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Interaction-induced multiparticle bound states in the continuum (2312.15664v2)

Published 25 Dec 2023 in quant-ph

Abstract: Bound states in the continuum (BICs) are localized modes residing in the radiation continuum. They were first predicted for single-particle states, and became a general feature of many wave systems. In many-body quantum physics, it is still unclear what would be a close analog of BICs, and whether interparticle interaction may induce BICs. Here, we predict a novel type of multiparticle states in the interaction-modulated Bose-Hubbard model that can be associated with the BIC concept. Under periodic boundary conditions, a so-called quasi-BIC appears as a bound pair residing in a standing wave formed by the third particle. Under open boundary conditions, such a hybrid state becomes an eigenstate of the system. We demonstrate that the Thouless pumping of the quasi-BICs can be realized by modulating the onsite interactions in space and time. Surprisingly, while the center-of-mass of the quasi-BIC is shifted by a unit cell in one cycle, the bound pair moves in the opposite direction with the standing wave.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. J. v. Neumann and E. Wigner, Über merkwürdige diskrete eigenwerte, Phys. Z 30, 291 (1929).
  2. K. Koshelev, A. Bogdanov, and Y. Kivshar, Engineering with bound states in the continuum, Opt. Photon. News 31, 38 (2020a).
  3. S. I. Azzam and A. V. Kildishev, Photonic bound states in the continuum: from basics to applications, Adv. Opt. Mater. 9, 2001469 (2021).
  4. M. Rybin and Y. Kivshar, Supercavity lasing, Nature 541, 164 (2017).
  5. Y. Liu, W. Zhou, and Y. Sun, Optical refractive index sensing based on high-q bound states in the continuum in free-space coupled photonic crystal slabs, Sensors 17, 1861 (2017).
  6. N. Moiseyev, Suppression of feshbach resonance widths in two-dimensional waveguides and quantum dots: A lower bound for the number of bound states in the continuum, Phys. Rev. Lett. 102, 167404 (2009).
  7. E. N. Bulgakov and A. F. Sadreev, Bound states in the continuum in photonic waveguides inspired by defects, Phys. Rev. B 78, 075105 (2008).
  8. D. C. Marinica, A. G. Borisov, and S. V. Shabanov, Bound states in the continuum in photonics, Phys. Rev. Lett. 100, 183902 (2008).
  9. C. González-Santander, P. Orellana, and F. Dominguez-Adame, Bound states in the continuum driven by ac fields, EPL 102, 17012 (2013).
  10. S. Longhi and G. D. Valle, Floquet bound states in the continuum, Sci. Rep. 3, 2219 (2013).
  11. A. Agarwala and D. Sen, Effects of local periodic driving on transport and generation of bound states, Phys. Rev. B 96, 104309 (2017).
  12. M. I. Molina, A. E. Miroshnichenko, and Y. S. Kivshar, Surface bound states in the continuum, Phys. Rev. Lett. 108, 070401 (2012).
  13. N. Gallo and M. Molina, Bulk and surface bound states in the continuum, J. Phys. A Math. Theor. 48, 045302 (2014).
  14. B.-J. Yang, M. Saeed Bahramy, and N. Nagaosa, Topological protection of bound states against the hybridization, Nat. Commun. 4, 1524 (2013).
  15. K. Fan, I. V. Shadrivov, and W. J. Padilla, Dynamic bound states in the continuum, Optica 6, 169 (2019).
  16. X. Chen and W. Fan, Tunable bound states in the continuum in all-dielectric terahertz metasurfaces, Nanomaterials 10, 623 (2020).
  17. J. M. Zhang, D. Braak, and M. Kollar, Bound states in the continuum realized in the one-dimensional two-particle hubbard model with an impurity, Phys. Rev. Lett. 109, 116405 (2012).
  18. J. M. Zhang, D. Braak, and M. Kollar, Bound states in the one-dimensional two-particle hubbard model with an impurity, Phys. Rev. A 87, 023613 (2013).
  19. S. Sugimoto, Y. Ashida, and M. Ueda,  Many-body bound states in the continuum (2023), arXiv:2307.05456 [quant-ph] .
  20. G. Della Valle and S. Longhi, Floquet-hubbard bound states in the continuum, Phys. Rev. B 89, 115118 (2014).
  21. See Supplemental Material for details of (S1) Derivation of effective Hamiltonian for bound states; (S2) Dynamics of the type-(i,iii) states for three particles; (S3) higher order correlation of the BIC and quasi-BIC; (S4) Demonstration of multiparticle MLWS as eigenstate of projected position operator; (S5) Derivation of effective Hamiltonian for the BIC; (S6) Topological pumping of quasi-BIC in subspace; (S7) Robustness against disorder for topological pumping of the quasi-BIC, which includes Refs.[48,62,64,65].
  22. Y. Kagan and L. Maksimov, Localization in a system of interacting particles diffusing in a regular crystal, Zh. Eksp. Teor. Fiz. 87, 348 (1984).
  23. T. Grover and M. P. A. Fisher, Quantum disentangled liquids, J. Stat. Mech. Theory Exp. 2014, P10010 (2014).
  24. W. De Roeck and F. m. c. Huveneers, Scenario for delocalization in translation-invariant systems, Phys. Rev. B 90, 165137 (2014).
  25. J. Zhong and A. N. Poddubny, Classification of three-photon states in waveguide quantum electrodynamics, Phys. Rev. A 103, 023720 (2021).
  26. C. H. Lee, Many-body topological and skin states without open boundaries, Phys. Rev. B 104, 195102 (2021).
  27. A. N. Poddubny, Interaction-induced analog of a non-hermitian skin effect in a lattice two-body problem, Phys. Rev. B 107, 045131 (2023).
  28. N. Marzari and D. Vanderbilt, Maximally localized generalized wannier functions for composite energy bands, Phys. Rev. B 56, 12847 (1997).
  29. M. Takahashi, Half-filled hubbard model at low temperature, J. Phys. C: Solid State Phys. 10, 1289 (1977).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube