Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Unfitted Interface Penalty DG--FE Method for Elliptic Interface Problems (2312.15402v3)

Published 24 Dec 2023 in math.NA and cs.NA

Abstract: We propose an unfitted interface penalty Discontinuous Galerkin-Finite Element Method (UIPDG-FEM) for elliptic interface problems. This hybrid method combines the interior penalty discontinuous Galerkin (IPDG) terms near the interface-enforcing jump conditions via Nitsche method-with standard finite elements away from the interface. The UIPDG-FEM retains the flexibilities of IPDG, particularly simplifying mesh generation around complex interfaces, while avoiding its drawback of excessive number of global degrees of freedom. We derive optimal convergence rates independent of interface location and establish uniform flux error estimates robust to discontinuous coefficients. To deal with conditioning issues caused by small cut elements, we develop a robust two-dimensional merging algorithm that eliminates such elements entirely, ensuring the condition number of the discretized system remains independent of interface position. A key feature of the algorithm is a novel quantification criterion linking the threshold for small cuts to the product of the maximum interface curvature and the local mesh size. Numerical experiments confirm the theoretical results and demonstrate the effectiveness of the proposed method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. D. Arnold. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 19:742–760, 1982.
  2. I. Babuška. The finite element method with Lagrangian multipliers. Numer. Math., 20:179–192, 1972/73.
  3. The aggregated unfitted finite element method for elliptic problems. Comput. Methods Appl. Mech. Engrg., 336:533–553, 2018.
  4. P. Bastian and C. Engwer. An unfitted finite element method using discontinuous Galerkin. Int. J. Numer. Meth. Engng, 79(12):1557–1576, 2009.
  5. E. Burman. Ghost penalty. Comptes Rendus Mathematique, 348:1217–1220, 2010.
  6. An unfitted hybrid high-order method with cell agglomeration for elliptic interface problems. SIAM J. Sci. Comput., 43(2):A859–A882, 2021.
  7. E. Burman and A. Ern. Continuous interior penalty h⁢pℎ𝑝hpitalic_h italic_p-finite element methods for advection and advection-diffusion equations. Math. Comp., 259:1119–1140, 2007.
  8. E. Burman and A. Ern. An unfitted hybrid high-order method for elliptic interface problems. SIAM Journal on Numerical Analysis, 56(3):1525–1546, 2018.
  9. Robust flux error estimation of an unfitted Nitsche method for high-contrast interface problems. IMA J. Numer. Anal., 38(2):646–668, 2018.
  10. A cut finite element method with boundary value correction. Math. Comp., 87(310):633–657, 2018.
  11. E. Burman and P. Zunino. A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems. SIAM J. Numer. Anal., 44(4):1612–1638, 2006.
  12. Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations. SIAM J. Numer. Anal., 49:1761–1787, 2011.
  13. Z. Chen and Y. Liu. An arbitrarily high order unfitted finite element method for elliptic interface problems with automatic mesh generation. J. Comput. Phys., 491:Paper No. 112384, 24, 2023.
  14. Z. Chen and J. Zou. Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math., 79:175–202, 1998.
  15. A new multiscale finite element method for high-contrast elliptic interface problems. Math. Comp., 79(272):1915–1955, 2010.
  16. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
  17. High-order numerical quadratures in a tetrahedron with an implicitly defined curved interface. ACM Trans. Math. Software, 46(1):Art. 3, 18, 2020.
  18. A. Ern and J. Guermond. Evaluation of the condition number in linear systems arising in finite element approximations. M2AN, 40:29–48, 2006.
  19. A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements. Springer-Verlag, New York, 2004.
  20. A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal., 29:235–256, 2009.
  21. X. Feng and H. Wu. Discontinuous Galerkin methods for the Helmholtz equation with large wave numbers. SIAM J. Numer. Anal., 47:2872–2896, 2009.
  22. T. Fries and S. Omerović. Higher-order accurate integration of implicit geometries. Int. J. Numer. Meth. Engng, 106:323–371, 2016.
  23. V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations, volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986. Theory and algorithms.
  24. A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Engrg., 191:5537–5552, 2002.
  25. J. Huang and J. Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete and Continuous Dynamical Systems, Series B, 7(1):145–170, 2007.
  26. An unfitted interface penalty finite element method for elliptic interface problems. Comput. Methods Appl. Mech. Engrg., 323:439–460, 2017.
  27. A. Johansson and M. G. Larson. A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary. Numer. Math., 123:607–628, 2013.
  28. C. Lehrenfeld. High order unfitted finite element methods on level set domains using isoparametric mappings. Comput. Methods Appl. Mech. Engrg., 300:716–733, 2016.
  29. C. Lehrenfeld and A. Reusken. Analysis of a high-order unfitted finite element method for elliptic interface problems. IMA J. Numer. Anal., 38(3):1351–1387, 2018.
  30. Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Numer. Math., 60:19–37, 2010.
  31. R. Li and F. Yang. A discontinuous Galerkin method by patch reconstruction for elliptic interface problem on unfitted mesh. SIAM J. Sci. Comput., 42(2):A1428–A1457, 2020.
  32. Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal., 53(2):1121–1144, 2015.
  33. R. Massjung. An unfitted discontinuous Galerkin method applied to elliptic interface problems. SIAM J. Numer. Anal., 50:3134–3162, 2012.
  34. Highly accurate surface and volume integration on implicit domains by means of moment-fitting. Internat. J. Numer. Methods Engrg., 96:512–528, 2013.
  35. J. A. Nitsche. über ein variationsprinzip zur lösung Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unteworfen sind. Abh. Math. Sem. Univ. Hamburg, 36:9–15, 1971.
  36. R. I. Saye. High-order quadrature methods for implicitly defined surfaces and volumes in hyperrectangles. SIAM J. Sci. Comput., 37:A993–A1019, 2015.
  37. Q. Wang and J. Chen. An Unfitted Discontinuous Galerkin Method for Elliptic Interface Problems. Journal of Applied Mathematics, 2014(none):1 – 9, 2014.
  38. F. Wu and C. Desoer. Global inverse function theorem. IEEE Transactions on Circuit Theory, 19(2):199–201, March 1972.
  39. H. Wu and Y. Xiao. An unfitted hp-interface penalty finite element method for elliptic interface problems. J. Comput. Math., 37:316–339, 2019.
  40. High-order extended finite element methods for solving interface problems. Comput. Methods Appl. Mech. Engrg., 364:112964, 21, 2020.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com