Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study of Efficiency and Privacy of Federated Learning Algorithms (2312.15375v1)

Published 24 Dec 2023 in cs.LG, cs.CR, and cs.DC

Abstract: In today's world, the rapid expansion of IoT networks and the proliferation of smart devices in our daily lives, have resulted in the generation of substantial amounts of heterogeneous data. These data forms a stream which requires special handling. To handle this data effectively, advanced data processing technologies are necessary to guarantee the preservation of both privacy and efficiency. Federated learning emerged as a distributed learning method that trains models locally and aggregates them on a server to preserve data privacy. This paper showcases two illustrative scenarios that highlight the potential of federated learning (FL) as a key to delivering efficient and privacy-preserving machine learning within IoT networks. We first give the mathematical foundations for key aggregation algorithms in federated learning, i.e., FedAvg and FedProx. Then, we conduct simulations, using Flower Framework, to show the \textit{efficiency} of these algorithms by training deep neural networks on common datasets and show a comparison between the accuracy and loss metrics of FedAvg and FedProx. Then, we present the results highlighting the trade-off between maintaining privacy versus accuracy via simulations - involving the implementation of the differential privacy (DP) method - in Pytorch and Opacus ML frameworks on common FL datasets and data distributions for both FedAvg and FedProx strategies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooperating devices: A consensus approach for massive iot networks,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4641–4654, 2020.
  2. A. S. Sabyasachi, H. M. D. Kabir, A. M. Abdelmoniem, and S. K. Mondal, “A resilient auction framework for deadline-aware jobs in cloud spot market,” in 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS), 2017.
  3. A. M. Abdelmoniem, B. Bensaou, and A. J. Abu, “Hygenicc: Hypervisor-based generic ip congestion control for virtualized data centers,” in 2016 IEEE International Conference on Communications (ICC), 2016.
  4. H. Bennouri, A. Abdi, I. Hossain, and A. Pujol, “The role of soc in ensuring the security of iot devices: A review of current challenges and future directions,” in 2023 12th Mediterranean Conference on Embedded Computing (MECO), pp. 1–8, 2023.
  5. R. Krishnamurthi, A. Kumar, D. Gopinathan, A. Nayyar, and B. Qureshi, “An overview of iot sensor data processing, fusion, and analysis techniques,” Sensors, vol. 20, no. 21, p. 6076, 2020.
  6. P. I. Radoglou Grammatikis, P. G. Sarigiannidis, and I. D. Moscholios, “Securing the internet of things: Challenges, threats and solutions,” Internet of Things, vol. 5, pp. 41–70, 2019.
  7. S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for wireless communications: Motivation, opportunities, and challenges,” IEEE Communications Magazine, vol. 58, no. 6, pp. 46–51, 2020.
  8. H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” ArXiv 1602.05629, 2016.
  9. A. M. Abdelmoniem and M. Canini, “Towards mitigating device heterogeneity in federated learning via adaptive model quantization,” in Proceedings of the 1st Workshop on Machine Learning and Systems (EuroMLSys), p. 96–103, 2021.
  10. A. M. Abdelmoniem, A. N. Sahu, M. Canini, and S. A. Fahmy, “Refl: Resource-efficient federated learning,” in Proceedings of the Eighteenth European Conference on Computer Systems (EuroSys), 2023.
  11. W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato, and C. Miao, “Federated learning in mobile edge networks: A comprehensive survey,” IEEE Communications Surveys and Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020.
  12. T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimization in heterogeneous networks,” Proceedings of Machine learning and systems, vol. 2, pp. 429–450, 2020.
  13. D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani, H. L. Kwing, T. Parcollet, P. P. d. Gusmão, and N. D. Lane, “Flower: A friendly federated learning research framework,” arXiv preprint arXiv:2007.14390, 2020.
  14. C. Dwork, “Differential privacy: A survey of results,” in International conference on theory and applications of models of computation, pp. 1–19, Springer, 2008.
  15. M. Antonini, M. Pincheira, M. Vecchio, and F. Antonelli, “Tiny-mlops: a framework for orchestrating ml applications at the far edge of iot systems,” in 2022 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS), pp. 1–8, 2022.
  16. E. Raj, D. Buffoni, M. Westerlund, and K. Ahola, “Edge mlops: An automation framework for aiot applications,” in 2021 IEEE International Conference on Cloud Engineering (IC2E), pp. 191–200, 2021.
  17. A. M. Abdelmoniem, C.-Y. Ho, P. Papageorgiou, and M. Canini, “Empirical analysis of federated learning in heterogeneous environments,” in Proceedings of the 2nd European Workshop on Machine Learning and Systems (EuroMLSys), p. 1–9, 2022.
  18. A. M. Abdelmoniem, C.-Y. Ho, P. Papageorgiou, and M. Canini, “A comprehensive empirical study of heterogeneity in federated learning,” IEEE Internet of Things Journal, vol. 10, no. 16, 2023.
  19. A. J. Abu, B. Bensaou, and A. M. Abdelmoniem, “A markov model of ccn pending interest table occupancy with interest timeout and retries,” in 2016 IEEE International Conference on Communications (ICC), 2016.
  20. A. M. Abdelmoniem, B. Bensaou, and H. Susanto, “Taming latency in data centers via active congestion-probing,” in 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), 2019.
  21. A. M. Abdelmoniem, B. Bensaou, and V. Barsoum, “Incastguard: An efficient tcp-incast mitigation mechanism for cloud networks,” in 2018 IEEE Global Communications Conference (GLOBECOM), 2018.
  22. A. M. Abdelmoniem and B. Bensaou, “T-racks: A faster recovery mechanism for tcp in data center networks,” IEEE/ACM Transactions on Networking, vol. 29, no. 3, pp. 1074–1087, 2021.
  23. A. M. Abdelmoniem and B. Bensaou, “Efficient Switch-Assisted Congestion Control for Data Centers: an Implementation and Evaluation,” in IEEE International Performance Computing and Communications Conference (IPCCC), 2015.
  24. H. Susanto, A. M. Abdelmoniem, H. Zhang, B. Liu, and D. Towsley, “A near optimal multi-faced job scheduler for datacenter workloads,” in 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), 2019.
  25. A. M. Abdelmoniem, H. Susanto, and B. Bensaou, “Reducing latency in multi-tenant data centers via cautious congestion watch,” in Proceedings of the 49th International Conference on Parallel Processing (ICPP), 2020.
  26. J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting distributed synchronous sgd,” in International Conference on Learning Representations Workshop Track, 2016.
  27. K. A. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. M. Kiddon, J. Konečný, S. Mazzocchi, B. McMahan, T. V. Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards federated learning at scale: System design,” in SysML, 2019.
  28. H. Wu and P. Wang, “Node selection toward faster convergence for federated learning on non-iid data,” IEEE Transactions on Network Science and Engineering, vol. 9, no. 5, pp. 3099–3111, 2022.
  29. X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.
  30. M. Aledhari, R. Razzak, R. M. Parizi, and F. Saeed, “Federated learning: A survey on enabling technologies, protocols, and applications,” IEEE Access, vol. 8, pp. 140699–140725, 2020.
  31. I. Mironov, “Rényi differential privacy,” in 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pp. 263–275, 2017.
  32. A. Yousefpour, I. Shilov, A. Sablayrolles, D. Testuggine, K. Prasad, M. Malek, J. Nguyen, S. Ghosh, A. Bharadwaj, J. Zhao, G. Cormode, and I. Mironov, “Opacus: User-Friendly Differential Privacy Library in PyTorch,” arXiv e-prints, p. arXiv:2109.12298, Sept. 2021.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sofia Zahri (1 paper)
  2. Hajar Bennouri (1 paper)
  3. Ahmed M. Abdelmoniem (27 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.