Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Flat bands without twists: periodic holey graphene (2312.15165v1)

Published 23 Dec 2023 in cond-mat.mes-hall and cond-mat.mtrl-sci

Abstract: \textit{Holey Graphene} (HG) is a widely used graphene material for the synthesis of high-purity and highly crystalline materials. In this work, we explore the electronic properties of a periodic distribution of lattice holes, demonstrating the emergence of flat bands with compact localized states. It is shown that the holes break the bipartite sublattice and inversion symmetries, inducing gaps and a nonzero Berry curvature. Moreover, the folding of the Dirac cones from the hexagonal Brillouin zone (BZ) to the holey superlattice rectangular BZ of HG with sizes proportional to an integer $n$ times the graphene's lattice parameter leads to a periodicity in the gap formation such that $n \equiv 0$ (mod $3$). Meanwhile, it is shown that if $n \equiv \pm 1$ (mod $3$), a gap emerges where Dirac points are folded along the $\Gamma-X$ path. The low-energy hamiltonian for the three central bands is also obtained, revealing that the system behaves as an effective $\alpha-\mathcal{T}_{3}$ graphene material. Therefore, a simple protocol is presented here that allows obtaining flat bands at will. Such bands are known to increase electron-electron correlated effects. This work provides an alternative system, much easier to build than twisted systems, to obtain highly correlated quantum phases.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.