Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Opportunities for the direct manipulation of a phase-driven Andreev spin qubit (2312.14865v2)

Published 22 Dec 2023 in cond-mat.mes-hall

Abstract: In a Josephson junction, the transfer of Cooper pairs from one superconductor to the other one can be associated with the formation of Andreev bound states. In a Josephson junction made with a semiconducting nanowire, the spin degeneracy of these Andreev states can be broken thanks to the presence of spin-orbit coupling and a finite phase difference between the two superconducting electrodes. The lifting of the spin degeneracy opened the way to the realization of Andreev spin qubits that do not require the application of a large magnetic field. So far the operation of these qubits relied on a Raman process involving two microwave tones and a third Andreev state [M. Hays et al., Science 373, 430 (2021)]. Still, time-reversal preserving impurities in the nanowire allow for spin-flip scattering processes. Here, using the formalism of scattering matrices, we show that these processes generically couple Andreev states with opposite spins. In particular, the non-vanishing current matrix element between them allows for the direct manipulation of phase-driven Andreev spin qubits, thereby circumventing the use of the above-mentioned Raman process.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. A. F. Andreev, The thermal conductivity of the intermediate state in superconductors, Soviet Journal of Experimental and Theoretical Physics 19, 1228 (1964).
  2. I. O. Kulik, Macroscopic Quantization and the Proximity Effect in S-N-S Junctions, Soviet Journal of Experimental and Theoretical Physics 30, 944 (1969).
  3. C. W. J. Beenakker, Universal limit of critical-current fluctuations in mesoscopic Josephson junctions, Physical Review Letters 67, 3836 (1991).
  4. J. A. Sauls, Andreev bound states and their signatures, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, 20180140 (2018).
  5. N. M. Chtchelkatchev and Y. V. Nazarov, Andreev Quantum Dots for Spin Manipulation, Physical Review Letters 90, 226806 (2003).
  6. B. Béri, J. H. Bardarson, and C. W. J. Beenakker, Splitting of Andreev levels in a Josephson junction by spin-orbit coupling, Physical Review B 77, 045311 (2008).
  7. C. Padurariu and Y. V. Nazarov, Theoretical proposal for superconducting spin qubits, Physical Review B 81, 144519 (2010).
  8. S. Park and A. L. Yeyati, Andreev spin qubits in multichannel Rashba nanowires, Physical Review B 96, 125416 (2017).
  9. A. V. Moroz and C. H. W. Barnes, Effect of the spin-orbit interaction on the band structure and conductance of quasi-one-dimensional systems, Physical Review B 60, 14272 (1999).
  10. M. Governale and U. Zülicke, Spin accumulation in quantum wires with strong Rashba spin-orbit coupling, Physical Review B 66, 073311 (2002).
  11. P. Delplace, J. Li, and M. Büttiker, Magnetic-Field-Induced Localization in 2D Topological Insulators, Physical Review Letters 109, 246803 (2012).
  12. O. V. Dimitrova and M. V. Feigel’man, 2d sns junction with rashba spin-orbit interaction (2005), arXiv:cond-mat/0510182 .
  13. T. Yokoyama and Y. V. Nazarov, Singularities in the andreev spectrum of a multiterminal josephson junction, Phys. Rev. B 92, 155437 (2015).
Citations (3)

Summary

We haven't generated a summary for this paper yet.