Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SCUNet++: Swin-UNet and CNN Bottleneck Hybrid Architecture with Multi-Fusion Dense Skip Connection for Pulmonary Embolism CT Image Segmentation (2312.14705v2)

Published 22 Dec 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Pulmonary embolism (PE) is a prevalent lung disease that can lead to right ventricular hypertrophy and failure in severe cases, ranking second in severity only to myocardial infarction and sudden death. Pulmonary artery CT angiography (CTPA) is a widely used diagnostic method for PE. However, PE detection presents challenges in clinical practice due to limitations in imaging technology. CTPA can produce noises similar to PE, making confirmation of its presence time-consuming and prone to overdiagnosis. Nevertheless, the traditional segmentation method of PE can not fully consider the hierarchical structure of features, local and global spatial features of PE CT images. In this paper, we propose an automatic PE segmentation method called SCUNet++ (Swin Conv UNet++). This method incorporates multiple fusion dense skip connections between the encoder and decoder, utilizing the Swin Transformer as the encoder. And fuses features of different scales in the decoder subnetwork to compensate for spatial information loss caused by the inevitable downsampling in Swin-UNet or other state-of-the-art methods, effectively solving the above problem. We provide a theoretical analysis of this method in detail and validate it on publicly available PE CT image datasets FUMPE and CAD-PE. The experimental results indicate that our proposed method achieved a Dice similarity coefficient (DSC) of 83.47% and a Hausdorff distance 95th percentile (HD95) of 3.83 on the FUMPE dataset, as well as a DSC of 83.42% and an HD95 of 5.10 on the CAD-PE dataset. These findings demonstrate that our method exhibits strong performance in PE segmentation tasks, potentially enhancing the accuracy of automatic segmentation of PE and providing a powerful diagnostic tool for clinical physicians. Our source code and new FUMPE dataset are available at https://github.com/JustlfC03/SCUNet-plusplus.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. K. N. Blackmon, C. Florin, L. Bogoni, J. W. McCain, J. D. Koonce, H. Lee, G. Bastarrika, C. Thilo, P. Costello, M. Salganicoff et al., “Computer-aided detection of pulmonary embolism at ct pulmonary angiography: can it improve performance of inexperienced readers?” European Radiology, vol. 21, pp. 1214–1223, 2011.
  2. S. Buhmann, P. Herzog, J. Liang, M. Wolf, M. Salganicoff, C. Kirchhoff, M. Reiser, and C. H. Becker, “Clinical evaluation of a computer-aided diagnosis (cad) prototype for the detection of pulmonary embolism,” Academic radiology, vol. 14, no. 6, pp. 651–658, 2007.
  3. H. Yi and R. Yi, “Research on image segmentation based on threshold value method and regional growth method [j],” Electronic Test, vol. 10, pp. 23–25, 2012.
  4. N. Mesanovic, M. Grgic, H. Huseinagic, M. Males, E. Skejic, and M. Smajlovic, “Automatic ct image segmentation of the lungs with region growing algorithm,” in 18th international conference on systems, signals and image processing-IWSSIP, 2011, pp. 395–400.
  5. K. Anandh, C. Sujatha, and S. Ramakrishnan, “A method to differentiate mild cognitive impairment and alzheimer in mr images using eigen value descriptors,” Journal of medical systems, vol. 40, pp. 1–8, 2016.
  6. W. Tang, F. He, Y. Liu, and Y. Duan, “Matr: Multimodal medical image fusion via multiscale adaptive transformer,” IEEE Transactions on Image Processing, vol. 31, pp. 5134–5149, 2022.
  7. X. Yang, Y. Lin, J. Su, X. Wang, X. Li, J. Lin, and K.-T. Cheng, “A two-stage convolutional neural network for pulmonary embolism detection from ctpa images,” IEEE Access, vol. 7, pp. 84 849–84 857, 2019.
  8. S.-C. Huang, T. Kothari, I. Banerjee, C. Chute, R. L. Ball, N. Borus, A. Huang, B. N. Patel, P. Rajpurkar, J. Irvin et al., “Penet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric ct imaging,” NPJ digital medicine, vol. 3, no. 1, p. 61, 2020.
  9. H. Huhtanen, M. Nyman, T. Mohsen, A. Virkki, A. Karlsson, and J. Hirvonen, “Automated detection of pulmonary embolism from ct-angiograms using deep learning,” BMC Medical Imaging, vol. 22, no. 1, p. 43, 2022.
  10. L. Shi, D. Rajan, S. Abedin, M. S. Yellapragada, D. Beymer, and E. Dehghan, “Automatic diagnosis of pulmonary embolism using an attention-guided framework: a large-scale study,” in Medical Imaging with Deep Learning.   PMLR, 2020, pp. 743–754.
  11. S. Suman, G. Singh, N. Sakla, R. Gattu, J. Green, T. Phatak, D. Samaras, and P. Prasanna, “Attention based cnn-lstm network for pulmonary embolism prediction on chest computed tomography pulmonary angiograms,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VII 24.   Springer, 2021, pp. 356–366.
  12. H. Yuan, Z. Liu, Y. Shao, and M. Liu, “Resd-unet research and application for pulmonary artery segmentation,” IEEE Access, vol. 9, pp. 67 504–67 511, 2021.
  13. J. Guo, X. Liu, Y. Chen, S. Zhang, G. Tao, H. Yu, H. Zhu, W. Lei, H. Li, and N. Wang, “Aanet: artery-aware network for pulmonary embolism detection in ctpa images,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part I.   Springer, 2022, pp. 473–483.
  14. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  15. Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, “Unet++: A nested u-net architecture for medical image segmentation,” in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4.   Springer, 2018, pp. 3–11.
  16. H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, and M. Wang, “Swin-unet: Unet-like pure transformer for medical image segmentation,” in Computer Vision–ECCV 2022 Workshops: Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part III.   Springer, 2023, pp. 205–218.
  17. M. Masoudi, H.-R. Pourreza, M. Saadatmand-Tarzjan, N. Eftekhari, F. S. Zargar, and M. P. Rad, “A new dataset of computed-tomography angiography images for computer-aided detection of pulmonary embolism,” Scientific data, vol. 5, no. 1, pp. 1–9, 2018.
  18. G. González, D. Jimenez-Carretero, S. Rodríguez-López, C. Cano-Espinosa, M. Cazorla, T. Agarwal, V. Agarwal, N. Tajbakhsh, M. B. Gotway, J. Liang et al., “Computer aided detection for pulmonary embolism challenge (cad-pe),” arXiv preprint arXiv:2003.13440, 2020.
  19. F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural networks for volumetric medical image segmentation,” in 2016 fourth international conference on 3D vision (3DV).   Ieee, 2016, pp. 565–571.
  20. H. Kim, J. I. Monroe, S. Lo, M. Yao, P. M. Harari, M. Machtay, and J. W. Sohn, “Quantitative evaluation of image segmentation incorporating medical consideration functions,” Medical physics, vol. 42, no. 6Part1, pp. 3013–3023, 2015.
Citations (8)

Summary

We haven't generated a summary for this paper yet.