Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discrete Algebraic sets in Discrete Manifolds (2312.14671v1)

Published 22 Dec 2023 in math.CO and cs.DM

Abstract: A discrete d-manifold is a finite simple graph G=(V,E) where all unit spheres are (d-1)-spheres. A d-sphere is a d-manifold for which one can remove a vertex to make it contractible. A graph is contractible if one can remove a vertex with contractible unit sphere to get a contractible graph. We prove a discrete Morse-Sard theorem: if G=(V,E) is a d-manifold and f:V to Rk an arbitrary map, then for any c not in f(V), a level set { f = c } is always a (d-k)-manifold or empty. While a priori open sets in the simplicial complex of G, they are sub-manifolds in the Barycentric refinement of G. Level sets are orientable if G is orientable. Any complex-valued function psi on a discrete 4-manifold M defines so level surfaces {psi=c} which are except for c in f(V) always 2-manifolds or empty.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. P. Alexandroff. Diskrete Räume. Mat. Sb. 2, 2, 1937.
  2. S-S. Chern. From triangles to manifolds. American Mathematical Monthly, 86:339–349, 1979.
  3. Unrecognizability of manifolds. Ann. Pure Appl. Logic, 141:325–335, 2006.
  4. M. Dehn and P. Heegaard. Analysis situs. Enzyklopaedie d. Math. Wiss, III.1.1:153–220, 1907.
  5. J. Dieudonne. A History of Algebraic and Differential Topology, 1900-1960. Birkhäuser, 1989.
  6. V. Eberhard. Morphologie der Polyeder. Teubner Verlag, 1891.
  7. A.V. Evako. Dimension on discrete spaces. Internat. J. Theoret. Phys., 33(7):1553–1568, 1994.
  8. R. Forman. Combinatorial differential topology and geometry. New Perspectives in Geometric Combinatorics, 38, 1999.
  9. A.V. Ivashchenko. Graphs of spheres and tori. Discrete Math., 128(1-3):247–255, 1994.
  10. Frontiers of sphere recognition in practice. Journal of Applied and Computational Topology, 6:503–527, 2022.
  11. B.W. Kernighan and R. Pike. The Practice of Programming. Addison-Wesley, 1999.
  12. V. Klee. The Euler characteristic in combinatorial geometry. The American Mathematical Monthly, 70(2):pp. 119–127, 1963.
  13. O. Knill. A graph theoretical Gauss-Bonnet-Chern theorem. http://arxiv.org/abs/1111.5395, 2011.
  14. O. Knill. A graph theoretical Poincaré-Hopf theorem. http://arxiv.org/abs/1201.1162, 2012.
  15. O. Knill. An index formula for simple graphs . http://arxiv.org/abs/1205.0306, 2012.
  16. O. Knill. The Euler characteristic of an even-dimensional graph. http://arxiv.org/abs/1307.3809, 2013.
  17. O. Knill. The Künneth formula for graphs. http://arxiv.org/abs/1505.07518, 2015.
  18. O. Knill. A Sard theorem for graph theory. http://arxiv.org/abs/1508.05657, 2015.
  19. O. Knill. On a Dehn-Sommerville functional for simplicial complexes. https://arxiv.org/abs/1705.10439, 2017.
  20. O. Knill. Dehn-Sommerville from Gauss-Bonnet. https://arxiv.org/abs/1905.04831, 2019.
  21. O. Knill. Finite topologies for finite geometries. https://arxiv.org/abs/2301.03156, 2023.
  22. O. Knill. Finite topologies for finite geometries. http://arxiv.org/abs/2301.03156, 2023.
  23. H. W. Kuhn and S. Nasar. The Essential Nash. Princeton University Press, 2002.
  24. I. Lakatos. Proofs and Refutations. Cambridge University Press, 1976.
  25. F. Lutz. The manifold page. http://page.math.tu-berlin.de/ lutz/stellar/, Accessed, June 2015.
  26. J. Milnor. Topology from the differential viewpoint. University of Virginia Press, Charlottesville, Va, 1965.
  27. A.P. Morse. The behavior of a function on its critical set. Ann. of Math. (2), 40(1):62–70, 1939.
  28. P.S. Novikov. On the algorithmic insolvability of the word problem in group theory. Izdat. Akad. Nauk SSSR Moscow: Trudy Mat, p. 44. Inst, Steklov., 1955.
  29. D.S. Richeson. Euler’s Gem. Princeton University Press, Princeton, NJ, 2008. The polyhedron formula and the birth of topology.
  30. A. Sard. The measure of the critical values of differentiable maps. Bull. Amer. Math. Soc., 48:883–890, 1942.
  31. E. Scholz. The concept of manifold, 1850-1950. In History of Topology. Elsevier, 1999.
  32. D. Sommerville. The relations connecting the angle sums and volume of a polytope in space of n dimensions. Proceedings of the Royal Society, Series A, 115:103–19, 1927.
  33. A.A. Zykov. On some properties of linear complexes. (russian). Mat. Sbornik N.S., 24(66):163–188, 1949.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com