Discrete Algebraic sets in Discrete Manifolds (2312.14671v1)
Abstract: A discrete d-manifold is a finite simple graph G=(V,E) where all unit spheres are (d-1)-spheres. A d-sphere is a d-manifold for which one can remove a vertex to make it contractible. A graph is contractible if one can remove a vertex with contractible unit sphere to get a contractible graph. We prove a discrete Morse-Sard theorem: if G=(V,E) is a d-manifold and f:V to Rk an arbitrary map, then for any c not in f(V), a level set { f = c } is always a (d-k)-manifold or empty. While a priori open sets in the simplicial complex of G, they are sub-manifolds in the Barycentric refinement of G. Level sets are orientable if G is orientable. Any complex-valued function psi on a discrete 4-manifold M defines so level surfaces {psi=c} which are except for c in f(V) always 2-manifolds or empty.
- P. Alexandroff. Diskrete Räume. Mat. Sb. 2, 2, 1937.
- S-S. Chern. From triangles to manifolds. American Mathematical Monthly, 86:339–349, 1979.
- Unrecognizability of manifolds. Ann. Pure Appl. Logic, 141:325–335, 2006.
- M. Dehn and P. Heegaard. Analysis situs. Enzyklopaedie d. Math. Wiss, III.1.1:153–220, 1907.
- J. Dieudonne. A History of Algebraic and Differential Topology, 1900-1960. Birkhäuser, 1989.
- V. Eberhard. Morphologie der Polyeder. Teubner Verlag, 1891.
- A.V. Evako. Dimension on discrete spaces. Internat. J. Theoret. Phys., 33(7):1553–1568, 1994.
- R. Forman. Combinatorial differential topology and geometry. New Perspectives in Geometric Combinatorics, 38, 1999.
- A.V. Ivashchenko. Graphs of spheres and tori. Discrete Math., 128(1-3):247–255, 1994.
- Frontiers of sphere recognition in practice. Journal of Applied and Computational Topology, 6:503–527, 2022.
- B.W. Kernighan and R. Pike. The Practice of Programming. Addison-Wesley, 1999.
- V. Klee. The Euler characteristic in combinatorial geometry. The American Mathematical Monthly, 70(2):pp. 119–127, 1963.
- O. Knill. A graph theoretical Gauss-Bonnet-Chern theorem. http://arxiv.org/abs/1111.5395, 2011.
- O. Knill. A graph theoretical Poincaré-Hopf theorem. http://arxiv.org/abs/1201.1162, 2012.
- O. Knill. An index formula for simple graphs . http://arxiv.org/abs/1205.0306, 2012.
- O. Knill. The Euler characteristic of an even-dimensional graph. http://arxiv.org/abs/1307.3809, 2013.
- O. Knill. The Künneth formula for graphs. http://arxiv.org/abs/1505.07518, 2015.
- O. Knill. A Sard theorem for graph theory. http://arxiv.org/abs/1508.05657, 2015.
- O. Knill. On a Dehn-Sommerville functional for simplicial complexes. https://arxiv.org/abs/1705.10439, 2017.
- O. Knill. Dehn-Sommerville from Gauss-Bonnet. https://arxiv.org/abs/1905.04831, 2019.
- O. Knill. Finite topologies for finite geometries. https://arxiv.org/abs/2301.03156, 2023.
- O. Knill. Finite topologies for finite geometries. http://arxiv.org/abs/2301.03156, 2023.
- H. W. Kuhn and S. Nasar. The Essential Nash. Princeton University Press, 2002.
- I. Lakatos. Proofs and Refutations. Cambridge University Press, 1976.
- F. Lutz. The manifold page. http://page.math.tu-berlin.de/ lutz/stellar/, Accessed, June 2015.
- J. Milnor. Topology from the differential viewpoint. University of Virginia Press, Charlottesville, Va, 1965.
- A.P. Morse. The behavior of a function on its critical set. Ann. of Math. (2), 40(1):62–70, 1939.
- P.S. Novikov. On the algorithmic insolvability of the word problem in group theory. Izdat. Akad. Nauk SSSR Moscow: Trudy Mat, p. 44. Inst, Steklov., 1955.
- D.S. Richeson. Euler’s Gem. Princeton University Press, Princeton, NJ, 2008. The polyhedron formula and the birth of topology.
- A. Sard. The measure of the critical values of differentiable maps. Bull. Amer. Math. Soc., 48:883–890, 1942.
- E. Scholz. The concept of manifold, 1850-1950. In History of Topology. Elsevier, 1999.
- D. Sommerville. The relations connecting the angle sums and volume of a polytope in space of n dimensions. Proceedings of the Royal Society, Series A, 115:103–19, 1927.
- A.A. Zykov. On some properties of linear complexes. (russian). Mat. Sbornik N.S., 24(66):163–188, 1949.