Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine learning for structure-guided materials and process design (2312.14552v3)

Published 22 Dec 2023 in cond-mat.mtrl-sci and cs.LG

Abstract: In recent years, there has been a growing interest in accelerated materials innovation in the context of the process-structure-property chain. In this regard, it is essential to take into account manufacturing processes and tailor materials design approaches to support downstream process design approaches. As a major step into this direction, we present a holistic and generic optimization approach that covers the entire process-structure-property chain in materials engineering. Our approach specifically employs machine learning to address two critical identification problems: a materials design problem, which involves identifying near-optimal material microstructures that exhibit desired properties, and a process design problem that is to find an optimal processing path to manufacture these microstructures. Both identification problems are typically ill-posed, which presents a significant challenge for solution approaches. However, the non-unique nature of these problems offers an important advantage for processing: By having several target microstructures that perform similarly well, processes can be efficiently guided towards manufacturing the best reachable microstructure. The functionality of the approach is demonstrated at manufacturing crystallographic textures with desired properties in a simulated metal forming process.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. J. J. de Pablo, N. E. Jackson, M. A. Webb, L.-Q. Chen, J. E. Moore, D. Morgan, R. Jacobs, T. Pollock, D. G. Schlom, E. S. Toberer, et al., “New frontiers for the materials genome initiative,” npj Computational Materials, vol. 5, no. 1, p. 41, 2019.
  2. Advanced materials initiative 2030, “The materials roadmap 2030,” tech. rep., 2022.
  3. P. Grant, “Foresight – new and advanced materials,” tech. rep., 2013.
  4. G. B. Olson, “Computational design of hierarchically structured materials,” Science, vol. 277, no. 5330, pp. 1237–1242, 1997.
  5. J. Hadamard, “Sur les problèmes aux dérivées partielles et leur signification physique,” Princeton university bulletin, pp. 49–52, 1902.
  6. A. Agrawal and A. Choudhary, “Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science,” Apl Materials, vol. 4, no. 5, p. 053208, 2016.
  7. Y. Liu, T. Zhao, W. Ju, and S. Shi, “Materials discovery and design using machine learning,” Journal of Materiomics, vol. 3, no. 3, pp. 159–177, 2017.
  8. M. Mozaffar, S. Liao, X. Xie, S. Saha, C. Park, J. Cao, W. K. Liu, and Z. Gan, “Mechanistic artificial intelligence (mechanistic-ai) for modeling, design, and control of advanced manufacturing processes: Current state and perspectives,” Journal of Materials Processing Technology, vol. 302, p. 117485, 2022.
  9. J. Dornheim, L. Morand, S. Zeitvogel, T. Iraki, N. Link, and D. Helm, “Deep reinforcement learning methods for structure-guided processing path optimization,” Journal of Intelligent Manufacturing, vol. 33, pp. 333–352, 2021.
  10. T. Iraki, L. Morand, J. Dornheim, N. Link, and D. Helm, “A multi-task learning-based optimization approach for finding diverse sets of material microstructures with desired properties and its application to texture optimization,” Journal of Intelligent Manufacturing, 2023.
  11. T. Iraki, L. Morand, N. Link, S. Sandfeld, and H. Dirk, “Accurate distances measures and machine learning of the texture-property relation for crystallographic textures represented by one-point statistics,” arXiv:2312.04214, 2023.
  12. D. T. Fullwood, S. R. Niezgoda, B. L. Adams, and S. R. Kalidindi, “Microstructure sensitive design for performance optimization,” Progress in Materials Science, vol. 55, no. 6, pp. 477–562, 2010.
  13. D. Li, H. Garmestani, and S. Ahzi, “Processing path optimization to achieve desired texture in polycrystalline materials,” Acta materialia, vol. 55, no. 2, pp. 647–654, 2007.
  14. Butterworth-Heinemann, 2012.
  15. S. R. Kalidindi, J. R. Houskamp, M. Lyons, and B. L. Adams, “Microstructure sensitive design of an orthotropic plate subjected to tensile load,” International Journal of Plasticity, vol. 20, no. 8-9, pp. 1561–1575, 2004.
  16. J. B. Shaffer, M. Knezevic, and S. R. Kalidindi, “Building texture evolution networks for deformation processing of polycrystalline fcc metals using spectral approaches: Applications to design for targeted performance,” International Journal of Plasticity, vol. 26, no. 8, pp. 1183–1194, 2010.
  17. M. Kuroda and S. Ikawa, “Texture optimization of rolled aluminum alloy sheets using a genetic algorithm,” Materials Science and Engineering: A, vol. 385, no. 1-2, pp. 235–244, 2004.
  18. R. Liu, A. Kumar, Z. Chen, A. Agrawal, V. Sundararaghavan, and A. Choudhary, “A predictive machine learning approach for microstructure optimization and materials design,” Scientific Reports, vol. 5, no. 1, pp. 1–12, 2015.
  19. P. V. Balachandran, D. Xue, J. Theiler, J. Hogden, and T. Lookman, “Adaptive strategies for materials design using uncertainties,” Scientific reports, vol. 6, no. 1, pp. 1–9, 2016.
  20. A. Tran and T. Wildey, “Solving stochastic inverse problems for property–structure linkages using data-consistent inversion and machine learning,” JOM, vol. 73, no. 1, pp. 72–89, 2021.
  21. P. Acar and V. Sundararaghavan, “Linear solution scheme for microstructure design with process constraints,” AIAA Journal, vol. 54, no. 12, pp. 4022–4031, 2016.
  22. P. Acar and V. Sundararaghavan, “Reduced-order modeling approach for materials design with a sequence of processes,” AIAA Journal, vol. 56, no. 12, pp. 5041–5044, 2018.
  23. V. Sundararaghavan and N. Zabaras, “On the synergy between texture classification and deformation process sequence selection for the control of texture-dependent properties,” Acta materialia, vol. 53, no. 4, pp. 1015–1027, 2005.
  24. S. Sundar and V. Sundararaghavan, “Database development and exploration of process–microstructure relationships using variational autoencoders,” Materials Today Communications, vol. 25, p. 101201, 2020.
  25. C. Bauckhage, “Ml2r coding nuggets: Hopfield nets for max-sum diversification,” 2021.
  26. S. R. Kalidindi, C. A. Bronkhorst, and L. Anand, “Crystallographic texture evolution in bulk deformation processing of fcc metals,” Journal of the Mechanics and Physics of Solids, vol. 40, no. 3, pp. 537–569, 1992.
  27. X. Ling, M. Horstemeyer, and G. Potirniche, “On the numerical implementation of 3d rate-dependent single crystal plasticity formulations,” International Journal for Numerical Methods in Engineering, vol. 63, no. 4, pp. 548–568, 2005.
  28. R. Quey, P. Dawson, and F. Barbe, “Large-scale 3d random polycrystals for the finite element method: Generation, meshing and remeshing,” Computer Methods in Applied Mechanics and Engineering, vol. 200, no. 17-20, pp. 1729–1745, 2011.
  29. R. Quey, A. Villani, and C. Maurice, “Nearly uniform sampling of crystal orientations,” Journal of Applied Crystallography, vol. 51, no. 4, pp. 1162–1173, 2018.
  30. Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as a metric for image retrieval,” International Journal of Computer Vision, vol. 40, pp. 99–121, 2000.
  31. M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,” in Advances in Neural Information Processing Systems (C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, eds.), vol. 26, Curran Associates, Inc., 2013.
  32. D. Q. Huynh, “Metrics for 3D rotations: Comparison and analysis,” Journal of Mathematical Imaging and Vision, vol. 35, no. 2, pp. 155–164, 2009.
  33. J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using a” siamese” time delay neural network,” Advances in neural information processing systems, vol. 6, 1993.
  34. J. Zhang and A. C. Sanderson, “Jade: Adaptive differential evolution with optional external archive,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009.
  35. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.
  36. H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,” in Thirtieth AAAI conference on artificial intelligence, 2016.
  37. T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” arXiv:1511.05952, 2015.
  38. Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas, “Dueling network architectures for deep reinforcement learning,” arXiv:1511.06581, 2015.
  39. R. S. Sutton, A. G. Barto, and R. J. Williams, “Reinforcement learning is direct adaptive optimal control,” IEEE control systems magazine, vol. 12, no. 2, pp. 19–22, 1992.
  40. L. Morand, T. Iraki, and D. Helm, “Crystallographic texture-property data set originating from a simulated multi-step metal forming process,” 2023. - Fraunhofer Fordatis repository https://fordatis.fraunhofer.de/handle/fordatis/319.
  41. L. Morand, J. Dornheim, J. Pagenkopf, and D. Helm, “Simulation of texture evolution for a multi-step metal forming process,” 2021. - Fraunhofer Fordatis repository https://fordatis.fraunhofer.de/handle/fordatis/201.2.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Lukas Morand (11 papers)
  2. Tarek Iraki (4 papers)
  3. Johannes Dornheim (7 papers)
  4. Stefan Sandfeld (40 papers)
  5. Norbert Link (6 papers)
  6. Dirk Helm (9 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.