Convergence of a conservative Crank-Nicolson finite difference scheme for the KdV equation with smooth and non-smooth initial data (2312.14454v1)
Abstract: In this paper, we study the stability and convergence of a fully discrete finite difference scheme for the initial value problem associated with the Korteweg-De Vries (KdV) equation. We employ the Crank-Nicolson method for temporal discretization and establish that the scheme is $L2$-conservative. The convergence analysis reveals that utilizing inherent Kato's local smoothing effect, the proposed scheme converges to a classical solution for sufficiently regular initial data $u_0 \in H{3}(\mathbb{R})$ and to a weak solution in $L2(0,T;L2_{\text{loc}}(\mathbb{R}))$ for non-smooth initial data $u_0 \in L2(\mathbb{R})$. Optimal convergence rates in both time and space for the devised scheme are derived. The theoretical results are justified through several numerical illustrations.
- Solving the Korteweg-de Vries equation with Hermite-based finite differences. Applied Mathematics and Computation, 401 (2021), 126101.
- Convergence of a finite difference method for the KdV and modified KdV equations with L2superscriptđż2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT data. Portugaliae Mathematica, 70 (2013), no.1, 23â50.
- J. L. Bona and R. Smith. The initial-value problem for the Korteweg-de Vries equation. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 278 (1975), no. 1287, 555â601.
- C. Courtès, F. Lagoutière and F. Rousset. Error estimates of finite difference schemes for the Kortewegâde Vries equation. IMA Journal of Numerical Analysis, 40 (2020), no. 1, 628â685.
- Convergence of a Finite differnce scheme for the Benjamin-Ono Equation. Numer. Math., 134 (2016), no. 2, 249â274.
- Convergence of a higher order scheme for the Kortewegâde Vries equation. SIAM Journal on Numerical Analysis, 53 (2015), no. 4, 1963â1983.
- R. Dutta and N. H. Risebro. A note on the convergence of a CrankâNicolson scheme for the KdV equation. Int. J. Numer. Anal. Model, 13 (2016), no. 5, 657â675.
- Operator splitting for the fractional Korteweg-de Vries equation. Numerical Methods for Partial Differential Equations, 37 (2021), no. 6, 3000â3022.
- Stability and Convergence analysis of a Crank-Nicolson Galerkin scheme for the fractional Korteweg-de Vries equation. arXiv.2311.06589, (2023).
- A finite difference method for the Korteweg-de Vries and the Kadomtsev-Petviashvili equations. Journal of computational and applied mathematics, 90 (1998), no. 1, 95â116.
- K. Goda. On stability of some finite difference schemes for the Korteweg-de Vries equation. Journal of the Physical Society of Japan, 39 (1975), no. 1, 229â236.
- H. Holden, K. H. Karlsen and N. H. Risebro. Operator splitting Methods for Generalized KortewegâDe Vries Equations. Journal of Computational Physics, 153 (1999), no. 1, 203â222.
- Convergence of a fully discrete finite difference scheme for the Kortewegâde Vries equation. IMA Journal of Numerical Analysis, 153 (2015), no. 1, 203â222.
- Operator splitting for the KdV equation. Mathematics of Computation, 80 (2011), no. 274, 821â846.
- T. Kato. On the Cauchy problem for the (generalized) Kortewegâde Vries equation. Studies in Appl. Math. Ad. in Math. Suppl. Stud., (1983), no. 8, 93â128.
- C. E. Kenig, G. Ponce and L. Vega. Well-Posedness of the Initial Value Problem for the Korteweg-de Vries Equation. Journal of the American Mathematical Society, 4 (1991), no. 2, 323â347.
- C. E. Kenig, G. Ponce and L. Vega. The Cauchy problem for the Kortewegâde Vries equation in Sobolev spaces of negative indices, Duke Mathematical Journal, 71 (1993), no. 1, 1â21.
- KdV is wellposed in Hâ1superscriptđť1H^{-1}italic_H start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Annals of Mathematics, 190 (2019), no. 1, 249â305.
- A numerical approach to blow-up issues for dispersive perturbations of Burgersâ equation. Physica D: Nonlinear Phenomena, 295 (2015), pp. 46â65.
- U. Koley, Finite difference schemes for the Korteweg-de Vries-Kawahara equation. International Journal of Numerical Analysis and Modeling 13, no. 3 (2016): 344-367.
- D. J. Korteweg and G. de Vries. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39 (1895), no. 240, 422â443.
- J. Li and M. R. Visbal. High-order compact schemes for nonlinear dispersive waves. Journal of Scientific Computing, 26 (2006), 1â23.
- Introduction to Nonlinear Dispersive Equations. University text, Springer, New York, (2015).
- A. SjĂśberg. On the Korteweg-de Vries equation: Existence and uniqueness. Journal of Mathematical Analysis and Applications, 29 (1970), no. 3, 569â579.
- J. O. Skogestad, and H. Kalisch. A boundary value problem for the KdV equation: Comparison of finite-difference and Chebyshev methods. Mathematics and Computers in Simulation, 80 (2009), no. 1, 151â163.
- T. Tao. Global well-posedness of the BenjaminâOno equation in h3â˘(â)superscriptâ3âh^{3}(\mathbb{R})italic_h start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( blackboard_R ). Journal of Hyperbolic Differential Equations, 1 (2004), no. 1, 27â49.
- V. ThomĂŠe and A. S. Vasudeva Murthy. A numerical method for the BenjaminâOno equation. BIT Numerical Mathematics, 38 (1998), 597â611.
- X. Wang, W. Dai and M. Usman. A high-order accurate finite difference scheme for the KdV equation with time-periodic boundary forcing. Applied Numerical Mathematics, 160 (2021), 102â121.