Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of a conservative Crank-Nicolson finite difference scheme for the KdV equation with smooth and non-smooth initial data (2312.14454v1)

Published 22 Dec 2023 in math.NA and cs.NA

Abstract: In this paper, we study the stability and convergence of a fully discrete finite difference scheme for the initial value problem associated with the Korteweg-De Vries (KdV) equation. We employ the Crank-Nicolson method for temporal discretization and establish that the scheme is $L2$-conservative. The convergence analysis reveals that utilizing inherent Kato's local smoothing effect, the proposed scheme converges to a classical solution for sufficiently regular initial data $u_0 \in H{3}(\mathbb{R})$ and to a weak solution in $L2(0,T;L2_{\text{loc}}(\mathbb{R}))$ for non-smooth initial data $u_0 \in L2(\mathbb{R})$. Optimal convergence rates in both time and space for the devised scheme are derived. The theoretical results are justified through several numerical illustrations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. Solving the Korteweg-de Vries equation with Hermite-based finite differences. Applied Mathematics and Computation, 401 (2021), 126101.
  2. Convergence of a finite difference method for the KdV and modified KdV equations with L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT data. Portugaliae Mathematica, 70 (2013), no.1, 23–50.
  3. J. L. Bona and R. Smith. The initial-value problem for the Korteweg-de Vries equation. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 278 (1975), no. 1287, 555–601.
  4. C. Courtès, F. Lagoutière and F. Rousset. Error estimates of finite difference schemes for the Korteweg–de Vries equation. IMA Journal of Numerical Analysis, 40 (2020), no. 1, 628–685.
  5. Convergence of a Finite differnce scheme for the Benjamin-Ono Equation. Numer. Math., 134 (2016), no. 2, 249–274.
  6. Convergence of a higher order scheme for the Korteweg–de Vries equation. SIAM Journal on Numerical Analysis, 53 (2015), no. 4, 1963–1983.
  7. R. Dutta and N. H. Risebro. A note on the convergence of a Crank–Nicolson scheme for the KdV equation. Int. J. Numer. Anal. Model, 13 (2016), no. 5, 657–675.
  8. Operator splitting for the fractional Korteweg-de Vries equation. Numerical Methods for Partial Differential Equations, 37 (2021), no. 6, 3000–3022.
  9. Stability and Convergence analysis of a Crank-Nicolson Galerkin scheme for the fractional Korteweg-de Vries equation. arXiv.2311.06589, (2023).
  10. A finite difference method for the Korteweg-de Vries and the Kadomtsev-Petviashvili equations. Journal of computational and applied mathematics, 90 (1998), no. 1, 95–116.
  11. K. Goda. On stability of some finite difference schemes for the Korteweg-de Vries equation. Journal of the Physical Society of Japan, 39 (1975), no. 1, 229–236.
  12. H. Holden, K. H. Karlsen and N. H. Risebro. Operator splitting Methods for Generalized Korteweg–De Vries Equations. Journal of Computational Physics, 153 (1999), no. 1, 203–222.
  13. Convergence of a fully discrete finite difference scheme for the Korteweg–de Vries equation. IMA Journal of Numerical Analysis, 153 (2015), no. 1, 203–222.
  14. Operator splitting for the KdV equation. Mathematics of Computation, 80 (2011), no. 274, 821–846.
  15. T. Kato. On the Cauchy problem for the (generalized) Korteweg–de Vries equation. Studies in Appl. Math. Ad. in Math. Suppl. Stud., (1983), no. 8, 93–128.
  16. C. E. Kenig, G. Ponce and L. Vega. Well-Posedness of the Initial Value Problem for the Korteweg-de Vries Equation. Journal of the American Mathematical Society, 4 (1991), no. 2, 323–347.
  17. C. E. Kenig, G. Ponce and L. Vega. The Cauchy problem for the Korteweg–de Vries equation in Sobolev spaces of negative indices, Duke Mathematical Journal, 71 (1993), no. 1, 1–21.
  18. KdV is wellposed in H−1superscript𝐻1H^{-1}italic_H start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. Annals of Mathematics, 190 (2019), no. 1, 249–305.
  19. A numerical approach to blow-up issues for dispersive perturbations of Burgers’ equation. Physica D: Nonlinear Phenomena, 295 (2015), pp. 46–65.
  20. U. Koley, Finite difference schemes for the Korteweg-de Vries-Kawahara equation. International Journal of Numerical Analysis and Modeling 13, no. 3 (2016): 344-367.
  21. D. J. Korteweg and G. de Vries. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39 (1895), no. 240, 422–443.
  22. J. Li and M. R. Visbal. High-order compact schemes for nonlinear dispersive waves. Journal of Scientific Computing, 26 (2006), 1–23.
  23. Introduction to Nonlinear Dispersive Equations. University text, Springer, New York, (2015).
  24. A. Sjöberg. On the Korteweg-de Vries equation: Existence and uniqueness. Journal of Mathematical Analysis and Applications, 29 (1970), no. 3, 569–579.
  25. J. O. Skogestad, and H. Kalisch. A boundary value problem for the KdV equation: Comparison of finite-difference and Chebyshev methods. Mathematics and Computers in Simulation, 80 (2009), no. 1, 151–163.
  26. T. Tao. Global well-posedness of the Benjamin–Ono equation in h3⁢(ℝ)superscriptℎ3ℝh^{3}(\mathbb{R})italic_h start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( blackboard_R ). Journal of Hyperbolic Differential Equations, 1 (2004), no. 1, 27–49.
  27. V. Thomée and A. S. Vasudeva Murthy. A numerical method for the Benjamin–Ono equation. BIT Numerical Mathematics, 38 (1998), 597–611.
  28. X. Wang, W. Dai and M. Usman. A high-order accurate finite difference scheme for the KdV equation with time-periodic boundary forcing. Applied Numerical Mathematics, 160 (2021), 102–121.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com