Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Attention-Based Symmetry Constraint Extraction for Analog Circuits (2312.14405v2)

Published 22 Dec 2023 in cs.LG

Abstract: In recent years, analog circuits have received extensive attention and are widely used in many emerging applications. The high demand for analog circuits necessitates shorter circuit design cycles. To achieve the desired performance and specifications, various geometrical symmetry constraints must be carefully considered during the analog layout process. However, the manual labeling of these constraints by experienced analog engineers is a laborious and time-consuming process. To handle the costly runtime issue, we propose a graph-based learning framework to automatically extract symmetric constraints in analog circuit layout. The proposed framework leverages the connection characteristics of circuits and the devices' information to learn the general rules of symmetric constraints, which effectively facilitates the extraction of device-level constraints on circuit netlists. The experimental results demonstrate that compared to state-of-the-art symmetric constraint detection approaches, our framework achieves higher accuracy and F1-score.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. U. Choudhury and A. Sangiovanni-Vincentelli, “Constraint generation for routing analog circuits,” in ACM/IEEE Design Automation Conference (DAC), 1991, pp. 561–566.
  2. E. Malavasi, E. Charbon, E. Felt, and A. Sangiovanni-Vincentelli, “Automation of ic layout with analog constraints,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 15, no. 8, pp. 923–942, 1996.
  3. E. Charbon, E. Malavasi, and A. Sangiovanni-Vincentelli, “Generalized constraint generation for analog circuit design,” in IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 1993, pp. 408–414.
  4. S. Bhattacharya, N. Jangkrajarng, R. Hartono, and C.-J. Shi, “Hierarchical extraction and verification of symmetry constraints for analog layout automation,” in IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC).   IEEE, 2004, pp. 400–405.
  5. P.-H. Wu, M. P.-H. Lin, T.-C. Chen, C.-F. Yeh, X. Li, and T.-Y. Ho, “A novel analog physical synthesis methodology integrating existent design expertise,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 34, no. 2, pp. 199–212, 2014.
  6. P.-H. Wu, M. P.-H. Lin, and T.-Y. Ho, “Analog layout synthesis with knowledge mining,” in European Conference on Circuit Theory and Design (ECCTD), 2015, pp. 1–4.
  7. Q. Hao, S. Chen, X. Hong, Y. Su, S. Dong, and Z. Qu, “Constraints generation for analog circuits layout,” in International Conference on Communications, Circuits and Systems (ICCCAS), 2004, pp. 1334–1338.
  8. Z. Zhou, S. Dong, X. Hong, Q. Hao, and S. Chen, “Analog constraints extraction based on the signal flow analysis,” in International Conference on ASIC (ASICON), 2005, pp. 825–828.
  9. T. Massier, H. Graeb, and U. Schlichtmann, “The sizing rules method for CMOS and bipolar analog integrated circuit synthesis,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 27, no. 12, pp. 2209–2222, 2008.
  10. M. Eick, M. Strasser, K. Lu, U. Schlichtmann, and H. E. Graeb, “Comprehensive generation of hierarchical placement rules for analog integrated circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 30, no. 2, pp. 180–193, 2011.
  11. M. Liu, W. Li, K. Zhu, B. Xu, Y. Lin, L. Shen, X. Tang, N. Sun, and D. Z. Pan, “S3superscript𝑆3S^{3}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPTDET: Detecting system symmetry constraints for analog circuits with graph similarity,” in IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), 2020, pp. 193–198.
  12. K. Kunal, J. Poojary, T. Dhar, M. Madhusudan, R. Harjani, and S. S. Sapatnekar, “A general approach for identifying hierarchical symmetry constraints for analog circuit layout,” in IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2020, pp. 1–8.
  13. X. Gao, C. Deng, M. Liu, Z. Zhang, D. Z. Pan, and Y. Lin, “Layout symmetry annotation for analog circuits with graph neural networks,” in IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), 2021, pp. 152–157.
  14. W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” in Conference on Neural Information Processing Systems (NIPS), 2017, pp. 1025–1035.
  15. H. Chen, K. Zhu, M. Liu, X. Tang, N. Sun, and D. Z. Pan, “Universal symmetry constraint extraction for analog and mixed-signal circuits with graph neural networks,” in ACM/IEEE Design Automation Conference (DAC), 2021, pp. 1243–1248.
  16. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
  17. M. Simonovsky and N. Komodakis, “GraphVAE: Towards generation of small graphs using variational autoencoders,” in International Conference on Artificial Neural Networks (ICANN), 2018, pp. 412–422.
  18. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Conference on Neural Information Processing Systems (NIPS), 2017, pp. 1–11.
  19. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.
  20. M. S. Hussain, M. J. Zaki, and D. Subramanian, “Global self-attention as a replacement for graph convolution,” in ACM International Conference on Knowledge Discovery and Data Mining (KDD), 2022, pp. 655–665.
  21. J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint arXiv:1607.06450, 2016.
  22. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
  23. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,” in NIPS Workshop, 2017.
  24. D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com