Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data needs and challenges for quantum dot devices automation (2312.14322v3)

Published 21 Dec 2023 in cond-mat.mes-hall, cs.DB, cs.LG, and quant-ph

Abstract: Gate-defined quantum dots are a promising candidate system for realizing scalable, coupled qubit systems and serving as a fundamental building block for quantum computers. However, present-day quantum dot devices suffer from imperfections that must be accounted for, which hinders the characterization, tuning, and operation process. Moreover, with an increasing number of quantum dot qubits, the relevant parameter space grows sufficiently to make heuristic control infeasible. Thus, it is imperative that reliable and scalable autonomous tuning approaches are developed. This meeting report outlines current challenges in automating quantum dot device tuning and operation with a particular focus on datasets, benchmarking, and standardization. We also present insights and ideas put forward by the quantum dot community on how to overcome them. We aim to provide guidance and inspiration to researchers invested in automation efforts.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. J. P. Zwolak and J. M. Taylor, Colloquium: Advances in automation of quantum dot devices control, Rev. Mod. Phys. 95, 011006 (2023).
  2. National Institute of Standards and Technology, Workshop on advances in automation of quantum dot devices control (2023).
  3. Existence and Use of Large Datasets To Address Research Questions for Characterization and Autonomous Tuning of Semiconductor Quantum Dot Devices, 88 Fed. Reg. 22409 (July 18, 2023), Accessed: 2023-10-17.
  4. European Organization For Nuclear Research and OpenAIRE, Zenodo (2013).
  5. The Center for Open Science, Open Science Framework (2013).
  6. J. H. Nielsen, Qcodes/qcodes: Qcodes 0.40.0 (2023).
  7. GO FAIR, https://www.go-fair.org/ (2020), Accessed: 2023-10-05.
  8. National Institute of Standards and Technology, Qflow 2.0: Quantum dot data for machine learning, Database: data.nist.gov, https://doi.org/10.18434/T4/1423788 (2022).
  9. J. Darulová, M. Troyer, and M. C. Cassidy, Evaluation of synthetic and experimental training data in supervised machine learning applied to charge-state detection of quantum dots, Mach. Learn.: Sci. Technol. 2, 045023 (2021).
  10. B. J. Weber and J. P. Zwolak, QDA22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT: A principled approach to automatically annotating charge stability diagrams, arXiv:2312.11206  (2023).
  11. Quantum Foundry, https://quantumfoundry.ucsb.edu/ (2019), Accessed: 2023-10-05.
  12. LPS Qubit Collaboratory, https://www.qubitcollaboratory.org/ (2020), Accessed: 2023-10-05.
  13. Cern open data portal (2014–2023).
  14. HEPData: Repository for publication-related High-Energy Physics data (1974–2023).
  15. E. Maguire, L. Heinrich, and G. Watt, HEPData: A repository for high energy physics data, J. Phys. Conf. Ser. 898, 102006 (2017).
Citations (5)

Summary

We haven't generated a summary for this paper yet.