Fundamental charges for dual-unitary circuits (2312.14148v3)
Abstract: Dual-unitary quantum circuits have recently attracted attention as an analytically tractable model of many-body quantum dynamics. Consisting of a 1+1D lattice of 2-qudit gates arranged in a 'brickwork' pattern, these models are defined by the constraint that each gate must remain unitary under swapping the roles of space and time. This dual-unitarity restricts the dynamics of local operators in these circuits: the support of any such operator must grow at the effective speed of light of the system, along one or both of the edges of a causal light cone set by the geometry of the circuit. Using this property, it is shown here that for 1+1D dual-unitary circuits the set of width-$w$ conserved densities (constructed from operators supported over $w$ consecutive sites) is in one-to-one correspondence with the set of width-$w$ solitons - operators which, up to a multiplicative phase, are simply spatially translated at the effective speed of light by the dual-unitary dynamics. A number of ways to construct these many-body solitons (explicitly in the case where the local Hilbert space dimension $d=2$) are then demonstrated: firstly, via a simple construction involving products of smaller, constituent solitons; and secondly, via a construction which cannot be understood as simply in terms of products of smaller solitons, but which does have a neat interpretation in terms of products of fermions under a Jordan-Wigner transformation. This provides partial progress towards a characterisation of the microscopic structure of complex many-body solitons (in dual-unitary circuits on qubits), whilst also establishing a link between fermionic models and dual-unitary circuits, advancing our understanding of what kinds of physics can be explored in this framework.
- A. Nahum, S. Vijay, and J. Haah, Operator spreading in random unitary circuits, Phys. Rev. X 8, 021014 (2018).
- B. Bertini and L. Piroli, Scrambling in random unitary circuits: Exact results, Phys. Rev. B 102, 064305 (2020).
- A. Chan, A. De Luca, and J. T. Chalker, Solution of a minimal model for many-body quantum chaos, Phys. Rev. X 8, 041019 (2018).
- B. Bertini, P. Kos, and T. Prosen, Exact correlation functions for dual-unitary lattice models in 1+1111+11 + 1 dimensions, Phys. Rev. Lett. 123, 210601 (2019a).
- B. Bertini, P. Kos, and T. Prosen, Random matrix spectral form factor of dual-unitary quantum circuits, Communications in Mathematical Physics 387, 597 (2021).
- P. W. Claeys and A. Lamacraft, Maximum velocity quantum circuits, Phys. Rev. Research 2, 033032 (2020).
- P. W. Claeys and A. Lamacraft, Ergodic and nonergodic dual-unitary quantum circuits with arbitrary local Hilbert space dimension, Phys. Rev. Lett. 126, 100603 (2021).
- S. Aravinda, S. A. Rather, and A. Lakshminarayan, From dual-unitary to quantum Bernoulli circuits: Role of the entangling power in constructing a quantum ergodic hierarchy, Phys. Rev. Research 3, 043034 (2021).
- S. A. Rather, S. Aravinda, and A. Lakshminarayan, Creating ensembles of dual unitary and maximally entangling quantum evolutions, Phys. Rev. Lett. 125, 070501 (2020).
- S. A. Rather, S. Aravinda, and A. Lakshminarayan, Construction and local equivalence of dual-unitary operators: From dynamical maps to quantum combinatorial designs, PRX Quantum 3, 040331 (2022).
- M. Borsi and B. Pozsgay, Construction and the ergodicity properties of dual unitary quantum circuits, Phys. Rev. B 106, 014302 (2022).
- T. Prosen, Many-body quantum chaos and dual-unitarity round-a-face, Chaos: An Interdisciplinary Journal of Nonlinear Science 31, 093101 (2021).
- B. Bertini, P. Kos, and T. Prosen, Entanglement spreading in a minimal model of maximal many-body quantum chaos, Phys. Rev. X 9, 021033 (2019b).
- S. Gopalakrishnan and A. Lamacraft, Unitary circuits of finite depth and infinite width from quantum channels, Phys. Rev. B 100, 064309 (2019).
- I. Reid and B. Bertini, Entanglement barriers in dual-unitary circuits, Physical Review B 104, 014301 (2021).
- T. Zhou and A. W. Harrow, Maximal entanglement velocity implies dual unitarity, Physical Review B 106, L201104 (2022).
- A. Foligno and B. Bertini, Growth of entanglement of generic states under dual-unitary dynamics, Physical Review B 107, 174311 (2023).
- B. Bertini, P. Kos, and T. Prosen, Operator entanglement in local quantum circuits I: Chaotic dual-unitary circuits, SciPost Physics 8, 067 (2020a).
- B. Bertini, P. Kos, and T. Prosen, Operator entanglement in local quantum circuits II: Solitons in chains of qubits, SciPost Physics 8, 068 (2020b).
- F. Fritzsch and T. Prosen, Eigenstate thermalization in dual-unitary quantum circuits: Asymptotics of spectral functions, Phys. Rev. E 103, 062133 (2021).
- M. Ippoliti and W. W. Ho, Dynamical purification and the emergence of quantum state designs from the projected ensemble, PRX Quantum 4, 030322 (2023).
- W. W. Ho and S. Choi, Exact emergent quantum state designs from quantum chaotic dynamics, Phys. Rev. Lett. 128, 060601 (2022).
- P. W. Claeys and A. Lamacraft, Emergent quantum state designs and biunitarity in dual-unitary circuit dynamics, Quantum 6, 738 (2022).
- M. A. Rampp and P. W. Claeys, Hayden-Preskill recovery in chaotic and integrable unitary circuit dynamics (2023), arXiv:2312.03838 [quant-ph] .
- T. Zhou and A. Nahum, Entanglement membrane in chaotic many-body systems, Phys. Rev. X 10, 031066 (2020).
- M. Ippoliti and V. Khemani, Postselection-free entanglement dynamics via spacetime duality, Phys. Rev. Lett. 126, 060501 (2021).
- T.-C. Lu and T. Grover, Spacetime duality between localization transitions and measurement-induced transitions, PRX Quantum 2, 040319 (2021).
- P. Kos and G. Styliaris, Circuits of space and time quantum channels, Quantum 7, 1020 (2023).
- L. Masanes, Discrete holography in dual-unitary circuits (2023), arXiv:2301.02825 [hep-th] .
- R. Suzuki, K. Mitarai, and K. Fujii, Computational power of one-and two-dimensional dual-unitary quantum circuits, Quantum 6, 631 (2022).
- P. Kos, B. Bertini, and T. Prosen, Correlations in perturbed dual-unitary circuits: Efficient path-integral formula, Phys. Rev. X 11, 011022 (2021).
- M. A. Rampp, R. Moessner, and P. W. Claeys, From dual unitarity to generic quantum operator spreading, Phys. Rev. Lett. 130, 130402 (2023a).
- X.-H. Yu, Z. Wang, and P. Kos, Hierarchical generalization of dual unitarity (2023), arXiv:2307.03138 [quant-ph] .
- A. Foligno, P. Kos, and B. Bertini, Quantum information spreading in generalised dual-unitary circuits (2023), arXiv:2312.02940 [cond-mat.stat-mech] .
- C. Liu and W. W. Ho, Solvable entanglement dynamics in quantum circuits with generalized dual unitarity (2023), arXiv:2312.12239 [quant-ph] .
- M. A. Rampp, S. A. Rather, and P. W. Claeys, The entanglement membrane in exactly solvable lattice models (2023b), arXiv:2312.12509 [quant-ph] .
- V. Khemani, A. Vishwanath, and D. A. Huse, Operator spreading and the emergence of dissipative hydrodynamics under unitary evolution with conservation laws, Phys. Rev. X 8, 031057 (2018).
- T. Rakovszky, F. Pollmann, and C. W. von Keyserlingk, Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation, Phys. Rev. X 8, 031058 (2018).
- L. D. Faddeev and L. A. Takhtajan, Hamiltonian methods in the theory of solitons, Vol. 23 (Springer, 1987).
- L. D. Faddeev, How algebraic bethe ansatz works for integrable model (1996), arXiv:hep-th/9605187 [hep-th] .
- A. Cervera-Lierta, Exact Ising model simulation on a quantum computer, Quantum 2, 114 (2018).
- S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars and Hilbert space fragmentation: a review of exact results, Reports on Progress in Physics 85, 086501 (2022).
- S. Moudgalya and O. I. Motrunich, Hilbert space fragmentation and commutant algebras, Phys. Rev. X 12, 011050 (2022).
- Y. Li, P. Sala, and F. Pollmann, Hilbert space fragmentation in open quantum systems, Phys. Rev. Res. 5, 043239 (2023).
- D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence-free subspaces for quantum computation, Physical Review Letters 81, 2594 (1998).
- D. Bernard and B. Doyon, Conformal field theory out of equilibrium: a review, Journal of Statistical Mechanics: Theory and Experiment 2016, 064005 (2016).
- R. Verresen, R. Moessner, and F. Pollmann, One-dimensional symmetry protected topological phases and their transitions, Phys. Rev. B 96, 165124 (2017).
- C. Jonay, V. Khemani, and M. Ippoliti, Triunitary quantum circuits, Phys. Rev. Research 3, 043046 (2021).
- G. M. Sommers, D. A. Huse, and M. J. Gullans, Crystalline quantum circuits, PRX Quantum 4, 030313 (2023).
- J. Haah, L. Fidkowski, and M. B. Hastings, Nontrivial quantum cellular automata in higher dimensions, Communications in Mathematical Physics 398, 469 (2023).
- J. Haah, Clifford quantum cellular automata: Trivial group in 2D and Witt group in 3D, Journal of Mathematical Physics 62 (2021).
- M. Freedman and M. B. Hastings, Classification of quantum cellular automata, Communications in Mathematical Physics 376, 1171 (2020).
- M. Freedman, J. Haah, and M. B. Hastings, The group structure of quantum cellular automata, Communications in Mathematical Physics 389, 1277 (2022).