Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Open-Set: ID Card Presentation Attack Detection using Neural Transfer Style (2312.13993v1)

Published 21 Dec 2023 in cs.CV and cs.CR

Abstract: The accurate detection of ID card Presentation Attacks (PA) is becoming increasingly important due to the rising number of online/remote services that require the presentation of digital photographs of ID cards for digital onboarding or authentication. Furthermore, cybercriminals are continuously searching for innovative ways to fool authentication systems to gain unauthorized access to these services. Although advances in neural network design and training have pushed image classification to the state of the art, one of the main challenges faced by the development of fraud detection systems is the curation of representative datasets for training and evaluation. The handcrafted creation of representative presentation attack samples often requires expertise and is very time-consuming, thus an automatic process of obtaining high-quality data is highly desirable. This work explores ID card Presentation Attack Instruments (PAI) in order to improve the generation of samples with four Generative Adversarial Networks (GANs) based image translation models and analyses the effectiveness of the generated data for training fraud detection systems. Using open-source data, we show that synthetic attack presentations are an adequate complement for additional real attack presentations, where we obtain an EER performance increase of 0.63% points for print attacks and a loss of 0.29% for screen capture attacks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. S. Gonzalez, A. Valenzuela, and J. Tapia, “Hybrid two-stage architecture for tampering detection of chipless id cards,” IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 3, no. 1, pp. 89–100, 2021.
  2. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551, 1989.
  3. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30.   Curran Associates, Inc., 2017.
  4. J. Tapia, C. Busch, H. Zhang, R. Ramachandra, and K. Raja, “Simulating print/scan textures for morphing attack detection,” in 2023 31st European Signal Processing Conference (EUSIPCO), 2023, pp. 610–614.
  5. V. Arlazarov, K. Bulatov, and T. Chernov, “MIDV-500: a dataset for identity document analysis and recognition on mobile devices in video stream,” Computer Optics, vol. 43, no. 5, Oct. 2019. [Online]. Available: http://computeroptics.ru/eng/KO/Annot/KO43-5/430515e.html
  6. K. Bulatov, D. Matalov, and V. V. Arlazarov, “MIDV-2019: challenges of the modern mobile-based document OCR,” in Twelfth International Conference on Machine Vision (ICMV 2019), vol. 11433.   SPIE, 2020, pp. 717–722.
  7. K. Bulatov, E. Emelianova, D. Tropin, N. Skoryukina, Y. Chernyshova, A. Sheshkus, S. Usilin, Z. Ming, J.-C. Burie, M. M. Luqman, and V. V. Arlazarov, “MIDV-2020: A Comprehensive Benchmark Dataset for Identity Document Analysis,” 2021, publisher: arXiv Version Number: 1. [Online]. Available: https://arxiv.org/abs/2107.00396
  8. D. V. Polevoy, I. V. Sigareva, D. M. Ershova, V. V. Arlazarov, D. P. Nikolaev, Z. Ming, M. M. Luqman, and J.-C. Burie, “Document Liveness Challenge Dataset (DLC-2021),” Journal of Imaging, vol. 8, no. 7, p. 181, Jun. 2022. [Online]. Available: https://www.mdpi.com/2313-433X/8/7/181
  9. D. Benalcazar, J. E. Tapia, S. Gonzalez, and C. Busch, “Synthetic id card image generation for improving presentation attack detection,” IEEE Transactions on Information Forensics and Security, vol. 18, pp. 1814–1824, 2023.
  10. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 4510–4520.
  11. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, Eds., vol. 27.   Curran Associates, Inc., 2014.
  12. M. Mirza and S. Osindero, “Conditional generative adversarial nets,” 2014.
  13. P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1125–1134.
  14. T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-resolution Image Synthesis and Semantic Manipulation with Conditional GANs,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8798–8807.
  15. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks,” in 2017 IEEE International Conference on Computer Vision (ICCV).   Venice: IEEE, Oct. 2017, pp. 2242–2251. [Online]. Available: http://ieeexplore.ieee.org/document/8237506/
  16. T. Park, A. A. Efros, R. Zhang, and J.-Y. Zhu, “Contrastive learning for unpaired image-to-image translation,” in Computer Vision – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds.   Cham: Springer International Publishing, 2020, pp. 319–345.
  17. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  18. A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive coding,” 2019.
  19. A. Berenguel, O. R. Terrades, J. Lladós, and C. Canero, “e-counterfeit: a mobile-server platform for document counterfeit detection,” in 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 9.   IEEE, 2017, pp. 15–20.
  20. A. Berenguel, O. Ramos Terrades, J. Lladós Canet, and C. Cañero Morales, “Recurrent comparator with attention models to detect counterfeit documents,” in 2019 International Conference on Document Analysis and Recognition (ICDAR), 2019, pp. 1332–1337.
  21. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for mobile vision applications,” 2017.
  22. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  23. R. Mudgalgundurao, P. Schuch, K. Raja, R. Ramachandra, and N. Damer, “Pixel‐wise supervision for presentation attack detection on identity document cards,” IET Biometrics, vol. 11, no. 5, pp. 383–395, Sep. 2022. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1049/bme2.12088
  24. G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.
  25. C. Chen, S. Zhang, F. Lan, and J. Huang, “Domain-agnostic document authentication against practical recapturing attacks,” IEEE Transactions on Information Forensics and Security, vol. 17, pp. 2890–2905, 2022.
  26. Y. Viazovetskyi, V. Ivashkin, and E. Kashin, “Stylegan2 distillation for feed-forward image manipulation,” in Computer Vision – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds.   Cham: Springer International Publishing, 2020, pp. 170–186.
  27. J. Magee, S. Sheridan, and C. Thorpe, “An Investigation into the Application of the Meijering Filter for Document Recapture Detection,” 2023, publisher: Technological University Dublin. [Online]. Available: https://arrow.tudublin.ie/scschcomcon/400/
  28. E. Meijering, M. Jacob, J. Sarria, P. Steiner, H. Hirling, and M. Unser, “Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images,” Cytometry Part A, vol. 58A, no. 2, pp. 167–176, Apr. 2004. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.20022
  29. Á. D. S. Soares, R. B. Das Neves Junior, and B. L. D. Bezerra, “BID Dataset: a challenge dataset for document processing tasks,” in Anais Estendidos da Conference on Graphics, Patterns and Images (SIBRAPI Estendido 2020).   Brasil: Sociedade Brasileira de Computação, Nov. 2020, pp. 143–146.
  30. E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to SIFT or SURF,” in 2011 International Conference on Computer Vision.   Barcelona, Spain: IEEE, Nov. 2011, pp. 2564–2571. [Online]. Available: http://ieeexplore.ieee.org/document/6126544/
  31. J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-resolution,” in European Conference on Computer Vision, 2016.
  32. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/1412.6980
  33. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–1958, 2014. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html
  34. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in International Conference on Learning Representations, 2019. [Online]. Available: https://openreview.net/forum?id=Bkg6RiCqY7
  35. D. Schulz, J. Maureira, J. Tapia, and C. Busch, “Identity documents image quality assessment,” in 2022 30th European Signal Processing Conference (EUSIPCO), 2022, pp. 1017–1021.
  36. R. Lara, A. Valenzuela, D. Schulz, J. E. Tapia, and C. Busch, “Towards an efficient semantic segmentation method of ID cards for verification systems,” CoRR, vol. abs/2111.12764, 2021. [Online]. Available: https://arxiv.org/abs/2111.12764
  37. T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, and X. Chen, “Improved techniques for training gans,” in Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29.   Curran Associates, Inc., 2016.
  38. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two time-scale update rule converge to a local nash equilibrium,” in Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30.   Curran Associates, Inc., 2017.
  39. M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton, “Demystifying MMD GANs,” in International Conference on Learning Representations, 2018. [Online]. Available: https://openreview.net/forum?id=r1lUOzWCW
  40. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.
  41. A. F. Martin, G. R. Doddington, T. Kamm, M. Ordowski, and M. A. Przybocki, “The det curve in assessment of detection task performance.” in EUROSPEECH, G. Kokkinakis, N. Fakotakis, and E. Dermatas, Eds.   ISCA, 1997.
Citations (1)

Summary

We haven't generated a summary for this paper yet.