A Superconducting Single-Atom Phonon Laser (2312.13948v2)
Abstract: The development of quantum acoustics has enabled the cooling of mechanical objects to their quantum ground state, generation of mechanical Fock-states, and Schrodinger cat states. Such demonstrations have made mechanical resonators attractive candidates for quantum information processing, metrology, and macroscopic tests of quantum mechanics. Here, we experimentally demonstrate a direct quantum-acoustic equivalent of a single-atom laser. A single superconducting qubit coupled to a high-overtone bulk acoustic resonator is used to drive the onset of phonon lasing. We observe the absence of a sharp lower lasing threshold and characteristic upper lasing threshold, unique predictions of single-atom lasing. Lasing of an object with a 25 ug mass represents a new regime of laser physics. It provides a possible tool for generating large amplitude coherent states in circuit quantum acoustodynamics, which is important for fundamental and quantum information applications.
- A. L. Schawlow, “Spectroscopy in a new light,” Reviews of Modern Physics 54, 697 (1982).
- A. L. Schawlow, “Laser spectroscopy of atoms and molecules: The abundance of new laser techniques is making possible a variety of spectroscopic experiments.” Science 202, 141–147 (1978).
- W. D. Phillips and H. Metcalf, “Laser deceleration of an atomic beam,” Physical Review Letters 48, 596 (1982).
- W. D. Phillips, “Nobel lecture: Laser cooling and trapping of neutral atoms,” Reviews of Modern Physics 70, 721 (1998).
- M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of bose-einstein condensation in a dilute atomic vapor,” science 269, 198–201 (1995).
- K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. Kurn, and W. Ketterle, “Bose-einstein condensation in a gas of sodium atoms,” Physical review letters 75, 3969 (1995).
- B. P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, et al., “Observation of gravitational waves from a binary black hole merger,” Physical review letters 116, 061102 (2016).
- S. Chaurasiya, P. Hew, P. Crosley, D. Sharon, K. Potts, K. Agopsowicz, M. Long, C. Shi, and M. Hitt, “Breast cancer gene therapy using an adenovirus encoding human il-2 under control of mammaglobin promoter/enhancer sequences,” Cancer Gene Therapy 23, 178–187 (2016).
- R. L. McCreery, Raman spectroscopy for chemical analysis (John Wiley & Sons, 2005).
- E. Khalkhal, M. Rezaei-Tavirani, M. R. Zali, and Z. Akbari, “The evaluation of laser application in surgery: a review article,” Journal of lasers in medical sciences 10, S104 (2019).
- I. Mahboob, K. Nishiguchi, A. Fujiwara, and H. Yamaguchi, “Phonon lasing in an electromechanical resonator,” Phys. Rev. Lett. 110, 127202 (2013).
- K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T. Hänsch, and T. Udem, “A phonon laser,” Nature Physics 5, 682–686 (2009).
- R. M. Pettit, W. Ge, P. Kumar, D. R. Luntz-Martin, J. T. Schultz, L. P. Neukirch, M. Bhattacharya, and A. N. Vamivakas, “An optical tweezer phonon laser,” Nature Photonics 13, 402–405 (2019).
- T. Kuang, R. Huang, W. Xiong, Y. Zuo, X. Han, F. Nori, C.-W. Qiu, H. Luo, H. Jing, and G. Xiao, “Nonlinear multi-frequency phonon lasers with active levitated optomechanics,” Nature Physics 19, 414–419 (2023).
- T. Behrle, T. L. Nguyen, F. Reiter, D. Baur, B. de Neeve, M. Stadler, M. Marinelli, F. Lancellotti, S. F. Yelin, and J. P. Home, “Phonon laser in the quantum regime,” Phys. Rev. Lett. 131, 043605 (2023).
- P. K. Shandilya, D. P. Lake, M. J. Mitchell, D. D. Sukachev, and P. E. Barclay, “Optomechanical interface between telecom photons and spin quantum memory,” Nature Physics 17, 1420–1425 (2021).
- D. Hatanaka, M. Asano, H. Okamoto, Y. Kunihashi, H. Sanada, and H. Yamaguchi, “On-chip coherent transduction between magnons and acoustic phonons in cavity magnomechanics,” Physical Review Applied 17, 034024 (2022).
- D. Hatanaka, M. Asano, H. Okamoto, and H. Yamaguchi, “Phononic crystal cavity magnomechanics,” Physical Review Applied 19, 054071 (2023).
- J. Zhang, B. Peng, Ş. K. Özdemir, K. Pichler, D. O. Krimer, G. Zhao, F. Nori, Y.-x. Liu, S. Rotter, and L. Yang, “A phonon laser operating at an exceptional point,” Nature Photonics 12, 479–484 (2018).
- I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett. 104, 083901 (2010).
- C. A. Potts, E. Varga, V. A. S. V. Bittencourt, S. Viola-Kusminskiy, and J. P. Davis, “Dynamical backaction magnomechanics,” Physical Review X 11, 031053 (2021).
- P. Parsa, P. K. Shandilya, D. P. Lake, M. E. Mitchell, and P. E. Barclay, “Feedback enhanced phonon lasing of a microwave frequency resonator,” arXiv preprint arXiv:2308.09130 (2023).
- T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” science 321, 1172–1176 (2008).
- W. Bron and W. Grill, “Stimulated phonon emission,” Physical Review Letters 40, 1459 (1978).
- S. Wallentowitz, W. Vogel, I. Siemers, and P. Toschek, “Vibrational amplification by stimulated emission of radiation,” Physical Review A 54, 943 (1996).
- I. Camps, S. Makler, H. Pastawski, and L. F. Torres, “Gaas- al x ga 1- x as double-barrier heterostructure phonon laser: A full quantum treatment,” Physical Review B 64, 125311 (2001).
- J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
- F. Dubin, C. Russo, H. G. Barros, A. Stute, C. Becher, P. O. Schmidt, and R. Blatt, “Quantum to classical transition in a single-ion laser,” Nature Physics 6, 350–353 (2010).
- K. An, J. J. Childs, R. R. Dasari, and M. S. Feld, “Microlaser: A laser with one atom in an optical resonator,” Physical review letters 73, 3375 (1994).
- Y. Mu and C. Savage, “One-atom lasers,” Physical Review A 46, 5944 (1992).
- S. Ashhab, J. Johansson, A. Zagoskin, and F. Nori, “Single-artificial-atom lasing using a voltage-biased superconducting charge qubit,” New Journal of Physics 11, 023030 (2009).
- M. Bild, M. Fadel, Y. Yang, U. von Lüpke, P. Martin, A. Bruno, and Y. Chu, “Schrödinger cat states of a 16-microgram mechanical oscillator,” Science 380, 274–278 (2023).
- M. F. Gely and G. A. Steele, “Superconducting electro-mechanics to test diósi-penrose effects of general relativity in massive superpositions,” AVS Quantum Science 3, 035601 (2021).
- B. Schrinski, Y. Yang, U. von Lüpke, M. Bild, Y. Chu, K. Hornberger, S. Nimmrichter, and M. Fadel, “Macroscopic quantum test with bulk acoustic wave resonators,” Phys. Rev. Lett. 130, 133604 (2023).
- M. Wybourne and J. Wigmore, “Phonon spectroscopy,” Reports on Progress in Physics 51, 923 (1988).
- O. Romero-Isart, A. C. Pflanzer, F. Blaser, R. Kaltenbaek, N. Kiesel, M. Aspelmeyer, and J. I. Cirac, “Large quantum superpositions and interference of massive nanometer-sized objects,” Phys. Rev. Lett. 107, 020405 (2011).
- U. von Lüpke, I. C. Rodrigues, Y. Yang, M. Fadel, and Y. Chu, “Engineering phonon-phonon interactions in multimode circuit quantum acousto-dynamics,” arXiv preprint arXiv:2303.00730 (2023).
- U. von Lüpke, Y. Yang, M. Bild, L. Michaud, M. Fadel, and Y. Chu, “Parity measurement in the strong dispersive regime of circuit quantum acoustodynamics,” Nature Physics 18, 794–799 (2022).
- Y. Chu, P. Kharel, T. Yoon, L. Frunzio, P. T. Rakich, and R. J. Schoelkopf, “Creation and control of multi-phonon fock states in a bulk acoustic-wave resonator,” Nature 563, 666–670 (2018).
- Y. Chu, P. Kharel, W. H. Renninger, L. D. Burkhart, L. Frunzio, P. T. Rakich, and R. J. Schoelkopf, “Quantum acoustics with superconducting qubits,” Science 358, 199–202 (2017).
- A. Välimaa, W. Crump, M. Kervinen, and M. A. Sillanpää, “Multiphonon transitions in a quantum electromechanical system,” Phys. Rev. Appl. 17, 064003 (2022).
- W. Crump, A. Välimaa, and M. A. Sillanpää, “Coupling high-overtone bulk acoustic wave resonators via superconducting qubits,” arXiv preprint arXiv:2307.05544 (2023).
- P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “A quantum engineer’s guide to superconducting qubits,” Applied physics reviews 6 (2019).
- M. Reed, L. DiCarlo, B. Johnson, L. Sun, D. Schuster, L. Frunzio, and R. Schoelkopf, “High-fidelity readout in circuit quantum electrodynamics using the jaynes-cummings nonlinearity,” Physical review letters 105, 173601 (2010).
- J. Gambetta, A. Blais, D. I. Schuster, A. Wallraff, L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting,” Physical Review A 74, 042318 (2006).
- D. Lachance-Quirion, Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, and Y. Nakamura, “Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet,” Science Advances 3, e1603150 (2017).
- D. Schuster, A. Wallraff, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Girvin, and R. J. Schoelkopf, “ac stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field,” Physical Review Letters 94, 123602 (2005).
- “Scixel,” https://scixel.es/, accessed: 2023-09-28.
- D. J. Thoen, B. G. C. Bos, E. Haalebos, T. Klapwijk, J. Baselmans, and A. Endo, “Superconducting nbtin thin films with highly uniform properties over a 100 mm wafer,” IEEE Transactions on Applied Superconductivity 27, 1–5 (2016).
- J. R. Johansson, P. D. Nation, and F. Nori, “Qutip: An open-source python framework for the dynamics of open quantum systems,” Computer Physics Communications 183, 1760–1772 (2012).