Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Age of Actuation and Timeliness: Semantics in a Wireless Power Transfer System (2312.13919v1)

Published 21 Dec 2023 in cs.IT, eess.SP, and math.IT

Abstract: In this paper, we investigate a model relevant to semantics-aware goal-oriented communications, and we propose a new metric that incorporates the utilization of information in addition to its timelines. Specifically, we consider the transmission of observations from an external process to a battery-powered receiver through status updates. These updates inform the receiver about the process status and enable actuation if sufficient energy is available to achieve a goal. We focus on a wireless power transfer (WPT) model, where the receiver receives energy from a dedicated power transmitter and occasionally from the data transmitter when they share a common channel. We analyze the Age of Information (AoI) and propose a new metric, the \textit{Age of Actuation (AoA), which is relevant when the receiver utilizes the status updates to perform actions in a timely manner}. We provide analytical characterizations of the average AoA and the violation probability of the AoA, demonstrating that AoA generalizes AoI. Moreover, we introduce and analytically characterize the \textit{Probability of Missing Actuation (PoMA)}; this metric becomes relevant also \textit{to quantify the incurred cost of a missed action}. We formulate unconstrained and constrained optimization problems for all the metrics and present numerical evaluations of our analytical results. This proposed set of metrics goes beyond the traditional timeliness metrics since the synergy of different flows is now considered.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. A. Nikkhah, A. Ephremides, and N. Pappas, “Age of actuation in a wireless power transfer system,” in IEEE INFOCOM Workshops, 2023.
  2. M. Kountouris and N. Pappas, “Semantics-empowered communication for networked intelligent systems,” IEEE Comm. Mag., 2021.
  3. N. Pappas and M. Kountouris, “Goal-oriented communication for real-time tracking in autonomous systems,” in IEEE ICAS, 2021.
  4. D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K. Wong, and C.-B. Chae, “Beyond transmitting bits: Context, semantics, and task-oriented communications,” IEEE Jour. on Selected Areas in Comm., 2023.
  5. P. Popovski, F. Chiariotti, K. Huang, A. E. Kalør, M. Kountouris, N. Pappas, and B. Soret, “A perspective on time toward wireless 6G,” Proceedings of the IEEE, 2022.
  6. Z. Utkovski, A. Munari, G. Caire, J. Dommel, P.-H. Lin, M. Franke, A. C. Drummond, and S. Stańczak, “Semantic communication for edge intelligence: Theoretical foundations and implications on protocols,” IEEE Internet of Things Mag., 2023.
  7. P. Park, S. Coleri Ergen, C. Fischione, C. Lu, and K. H. Johansson, “Wireless network design for control systems: A survey,” IEEE Comm. Surveys & Tutorials, 2018.
  8. P. Kutsevol, O. Ayan, N. Pappas, and W. Kellerer, “Experimental study of transport layer protocols for wireless networked control systems,” in IEEE SECON, 2023.
  9. Foundations and Trends® in Networking, 2017.
  10. R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of information: An introduction and survey,” IEEE Jour. Selected Areas in Commun., vol. 39, no. 5, pp. 1183–1210, 2021.
  11. Cambridge University Press, 2023.
  12. F. Chiariotti, J. Holm, A. E. Kalør, B. Soret, S. K. Jensen, T. B. Pedersen, and P. Popovski, “Query age of information: Freshness in pull-based communication,” IEEE T. on Comm., 2022.
  13. L. R. Varshney, “Transporting information and energy simultaneously,” in IEEE ISIT, 2008.
  14. X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless networks with rf energy harvesting: A contemporary survey,” IEEE Comm. Surveys & Tutorials, 2015.
  15. X. Wu, J. Yang, and J. Wu, “Optimal status update for age of information minimization with an energy harvesting source,” IEEE T. on Green Comm. and Networking, 2018.
  16. S. Farazi, A. G. Klein, and D. R. Brown, “Age of information in energy harvesting status update systems: When to preempt in service?,” in IEEE ISIT, 2018.
  17. R. D. Yates, “Lazy is timely: Status updates by an energy harvesting source,” in IEEE ISIT, 2015.
  18. S. Feng and J. Yang, “Optimal status updating for an energy harvesting sensor with a noisy channel,” in IEEE INFOCOM Workshops, 2018.
  19. X. Zheng, S. Zhou, Z. Jiang, and Z. Niu, “Closed-form analysis of non-linear age of information in status updates with an energy harvesting transmitter,” IEEE T. on Wireless Comm., 2019.
  20. E. Gindullina, L. Badia, and D. Gündüz, “Age-of-information with information source diversity in an energy harvesting system,” IEEE T. on Green Comm. and Networking, 2021.
  21. B. T. Bacinoglu, Y. Sun, E. Uysal, and V. Mutlu, “Optimal status updating with a finite-battery energy harvesting source,” Jour. of Comm. and Networks, 2019.
  22. A. Arafa and S. Ulukus, “Timely updates in energy harvesting two-hop networks: Offline and online policies,” IEEE T. on Wireless Comm., 2019.
  23. M. A. Abd-Elmagid and H. S. Dhillon, “Age of information in multi-source updating systems powered by energy harvesting,” IEEE Jour. on Selected Areas in Information Theory, 2022.
  24. M. A. Abd-Elmagid and H. S. Dhillon, “Closed-form characterization of the mgf of aoi in energy harvesting status update systems,” IEEE T. on Information Theory, 2022.
  25. A. Arafa, J. Yang, S. Ulukus, and H. V. Poor, “Age-minimal transmission for energy harvesting sensors with finite batteries: Online policies,” IEEE T. on Information Theory, 2020.
  26. N. Pappas, Z. Chen, and M. Hatami, “Average AoI of cached status updates for a process monitored by an energy harvesting sensor,” in CISS, 2020.
  27. Y. Dong, P. Fan, and K. B. Letaief, “Energy harvesting powered sensing in iot: Timeliness versus distortion,” IEEE Internet of Things Jour., 2020.
  28. M. Hatami, M. Leinonen, and M. Codreanu, “Aoi minimization in status update control with energy harvesting sensors,” IEEE T. on Comm., 2021.
  29. Z. Chen, N. Pappas, E. Björnson, and E. G. Larsson, “Optimizing information freshness in a multiple access channel with heterogeneous devices,” IEEE Open Jour. of the Comm. Society, 2021.
  30. E. T. Ceran, D. Gündüz, and A. György, “Reinforcement learning to minimize age of information with an energy harvesting sensor with harq and sensing cost,” in IEEE INFOCOM Workshops, 2019.
  31. M. Xie, Q. Cao, M. Zhou, and X. Jia, “Age of information for preemptive transmission in dual-sensor networks with energy harvesting,” in IEEE VTC-Spring, 2022.
  32. C. Xu, X. Zhang, H. H. Yang, X. Wang, N. Pappas, D. Niyato, and T. Q. S. Quek, “Optimal status updates for minimizing age of correlated information in iot networks with energy harvesting sensors,” IEEE T. on Mobile Computing, 2023.
  33. I. Krikidis, “Average age of information in wireless powered sensor networks,” IEEE Wireless Comm. Letters, 2019.
  34. A. M. Ibrahim, O. Ercetin, and T. ElBatt, “Stability analysis of slotted aloha with opportunistic rf energy harvesting,” IEEE Jour. on Selected Areas in Comm., 2016.
  35. M. Moradian, F. Ashtiani, and A. Khonsari, “Stability region and delay analysis of a swipt-based two-way relay network with opportunistic network coding,” IEEE T. on Vehicular Tech., 2020.
  36. M. A. Abd-Elmagid, H. S. Dhillon, and N. Pappas, “Aoi-optimal joint sampling and updating for wireless powered communication systems,” IEEE T. on Vehicular Tech., 2020.
  37. M. Sheikhi and V. Hakami, “Aoi-aware status update control for an energy harvesting source over an uplink mmwave channel,” in ICSPIS, 2021.
  38. S. Leng, X. Ni, and A. Yener, “Age of information for wireless energy harvesting secondary users in cognitive radio networks,” in IEEE MASS, 2019.
  39. E. Boshkovska, D. W. K. Ng, N. Zlatanov, and R. Schober, “Practical non-linear energy harvesting model and resource allocation for swipt systems,” IEEE Comm. Letters, 2015.
  40. R. Zhang and C. K. Ho, “Mimo broadcasting for simultaneous wireless information and power transfer,” IEEE T. on Wireless Comm., 2013.
  41. J. Park, B. Clerckx, C. Song, and Y. Wu, “An analysis of the optimum node density for simultaneous wireless information and power transfer in ad hoc networks,” IEEE T. on Vehicular Tech., 2018.
  42. Q. Shi, L. Liu, W. Xu, and R. Zhang, “Joint transmit beamforming and receive power splitting for miso swipt systems,” IEEE T. on Wireless Comm., 2014.
  43. P. V. Tuan and I. Koo, “Optimizing efficient energy transmission on a swipt interference channel under linear/nonlinear eh models,” IEEE Systems Jour., 2020.
  44. McGraw-Hill, 2002.
  45. G. D. Nguyen, S. Kompella, J. E. Wieselthier, and A. Ephremides, “Optimization of transmission schedules in capture-based wireless networks,” in IEEE MILCOM, 2008.
  46. E. Fountoulakis, T. Charalambous, N. Nomikos, A. Ephremides, and N. Pappas, “Information freshness and packet drop rate interplay in a two-user multi-access channel,” Jour. of Comm. and Networks, 2022.
  47. Cambridge University Press, 2013.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com