Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Theoretical analysis of git bisect (2312.13644v2)

Published 21 Dec 2023 in cs.DM and cs.DS

Abstract: In this paper, we consider the problem of finding a regression in a version control system (VCS), such as git. The set of versions is modelled by a Directed Acyclic Graph (DAG) where vertices represent versions of the software, and arcs are the changes between different versions. We assume that somewhere in the DAG, a bug was introduced, which persists in all of its subsequent versions. It is possible to query a vertex to check whether the corresponding version carries the bug. Given a DAG and a bugged vertex, the Regression Search Problem consists in finding the first vertex containing the bug in a minimum number of queries in the worst-case scenario. This problem is known to be NP-complete. We study the algorithm used in git to address this problem, known as git bisect. We prove that in a general setting, git bisect can use an exponentially larger number of queries than an optimal algorithm. We also consider the restriction where all vertices have indegree at most 2 (i.e. where merges are made between at most two branches at a time in the VCS), and prove that in this case, git bisect is a $\frac{1}{\log_2(3/2)}$-approximation algorithm, and that this bound is tight. We also provide a better approximation algorithm for this case. Finally, we give an alternative proof of the NP-completeness of the Regression Search Problem, via a variation with bounded indegree.

Citations (3)

Summary

We haven't generated a summary for this paper yet.