Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Peano Arithmetic and $μ$MALL (2312.13634v2)

Published 21 Dec 2023 in cs.LO

Abstract: Formal theories of arithmetic have traditionally been based on either classical or intuitionistic logic, leading to the development of Peano and Heyting arithmetic, respectively. We propose to use $\mu$MALL as a formal theory of arithmetic based on linear logic. This formal system is presented as a sequent calculus proof system that extends the standard proof system for multiplicative-additive linear logic (MALL) with the addition of the logical connectives universal and existential quantifiers (first-order quantifiers), term equality and non-equality, and the least and greatest fixed point operators. We first demonstrate how functions defined using $\mu$MALL relational specifications can be computed using a simple proof search algorithm. By incorporating weakening and contraction into $\mu$MALL, we obtain $\mu$LK+, a natural candidate for a classical sequent calculus for arithmetic. While important proof theory results are still lacking for $\mu$LK+ (including cut-elimination and the completeness of focusing), we prove that $\mu$LK+ is consistent and that it contains Peano arithmetic. We also prove some conservativity results regarding $\mu$LK+ over $\mu$MALL.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. Baelde D, Miller D. Least and greatest fixed points in linear logic. In: Dershowitz N, Voronkov A (eds.), International Conference on Logic for Programming and Automated Reasoning (LPAR), volume 4790 of LNCS. 2007 pp. 92–106. 10.1007/978-3-540-75560-9_9.
  2. Baelde D. A linear approach to the proof-theory of least and greatest fixed points. Ph.D. thesis, Ecole Polytechnique, 2008. URL http://arxiv.org/abs/0910.3383.
  3. Baelde D. Least and greatest fixed points in linear logic. ACM Trans. on Computational Logic, 2012. 13(1):2:1–2:44. 10.1145/2071368.2071370.
  4. Gehlot V, Gunter C. Normal Process Representatives. In: 5th Symp. on Logic in Computer Science. IEEE Computer Society Press, Philadelphia, Pennsylvania, 1990 pp. 200–207. 10.1109/LICS.1990.113746.
  5. Kobayashi N, Yonezawa A. Asynchronous communication model based on linear logic. Formal Aspects of Computing, 1995. 7(2):113–149. 10.1007/BF01211602.
  6. Miller D. The π𝜋\piitalic_π-calculus as a theory in linear logic: Preliminary results. In: Lamma E, Mello P (eds.), 3rd Workshop on Extensions to Logic Programming, number 660 in LNCS. Springer, Bologna, Italy, 1993 pp. 242–265. 10.1007/3-540-56454-3_13.
  7. Hodas J, Miller D. Logic Programming in a Fragment of Intuitionistic Linear Logic. Information and Computation, 1994. 110(2):327–365. 10.1006/inco.1994.1036.
  8. Miller D. Forum: A Multiple-Conclusion Specification Logic. Theoretical Computer Science, 1996. 165(1):201–232. 10.1016/0304-3975(96)00045-X.
  9. Girard JY. Schrödinger’s cut: La logique à la lumière du quantique, 2021. Unpublished., URL http://girard.perso.math.cnrs.fr/chat.pdf.
  10. Ehrhard T, Jafarrahmani F. Categorical models of Linear Logic with fixed points of formulas. In: 36th ACM/IEEE Symposium on Logic in Computer Science (LICS 2021), Jun 2021, Rome, Italy. IEEE, 2021 pp. 1–13. 10.1109/LICS52264.2021.9470664.
  11. Brotherston J, Simpson A. Sequent calculi for induction and infinite descent. J. of Logic and Computation, 2011. 21(6):1177–1216. 10.1093/logcom/exq052.
  12. Simpson A. Cyclic Arithmetic Is Equivalent to Peano Arithmetic. In: Esparza J, Murawski AS (eds.), Foundations of Software Science and Computation Structures - 20th International Conference, FoSSaCS, volume 10203 of LNCS. 2017 pp. 283–300. 10.1007/978-3-662-54458-7_17.
  13. Das A. On the logical complexity of cyclic arithmetic. Log. Methods Comput. Sci, 2020. 16(1). 10.4230/LIPIcs.FSCD.2021.29.
  14. Church A. A Formulation of the Simple Theory of Types. J. of Symbolic Logic, 1940. 5:56–68. 10.2307/2266170.
  15. Decision problems for linear logic with least and greatest fixed points. In: 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022 10.4230/LIPIcs.FSCD.2022.20.
  16. Horne R, Padovani L. A Logical Account of Subtyping for Session Types. In: Castellani I, Scalas A (eds.), Proc.  14th Workshop on Programming Language Approaches to Concurrency and Communication-cEntric Software, PLACES 2023, volume 378 of EPTCS. 2023 pp. 26–37. 10.4204/EPTCS.378.3.
  17. Gentzen G. Investigations into Logical Deduction. In: Szabo ME (ed.), The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland, Amsterdam, 1935. 10.1007/BF01201353. Translation of articles that appeared in 1934-35. Collected papers appeared in 1969.
  18. Tärnlund SA. Horn Clause Computability. BIT, 1977. 17:215–226. 10.1007/BF01932293.
  19. Heath Q, Miller D. A proof theory for model checking. J. of Automated Reasoning, 2019. 63(4):857–885. 10.1007/s10817-018-9475-3.
  20. Clark KL. Negation as failure. In: Gallaire J, Minker J (eds.), Logic and Data Bases, pp. 293–322. Plenum Press, New York, 1978. 10.1007/978-1-4684-3384-5_11.
  21. Miller D, Viel A. Proof search when equality is a logical connective. Annals of Mathematics and Artificial Intelligence, 2022. 90(5):523–535. 10.1007/s10472-021-09764-0. Special Issue on Theoretical and Practical Aspects of Unification.
  22. Howard WA. The formulae-as-type notion of construction, 1969. In: Seldin JP, Hindley R (eds.), To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus, and Formalism, pp. 479–490. Academic Press, New York, 1980.
  23. Girard JY. A Fixpoint Theorem in Linear Logic, 1992. An email posting to [email protected] archived at https://www.seas.upenn.edu/~sweirich/types/archive/1992/msg00030.html.
  24. Schroeder-Heister P. Rules of Definitional Reflection. In: Vardi M (ed.), 8th Symp. on Logic in Computer Science. IEEE Computer Society Press, IEEE, 1993 pp. 222–232. 10.1109/LICS.1993.287585.
  25. Grishin VN. Predicate and set-theoretic calculi based on logic without contractions. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1981. 45(1):47–68.
  26. Gérard U, Miller D. Separating Functional Computation from Relations. In: Goranko V, Dam M (eds.), 26th EACSL Annual Conference on Computer Science Logic (CSL 2017), volume 82 of LIPIcs. 2017 pp. 23:1–23:17. 10.4230/LIPIcs.CSL.2017.23.
  27. Friedman HM. Classically and Intuitionistically Provably Recursive Functions. In: Müller GH, Scott DS (eds.), Higher Order Set Theory, pp. 21–27. Springer Verlag, Berlin, 1978. 10.1007/BFb0103100.
  28. Paris JB, Kerby LAS. ΣnsubscriptΣ𝑛\Sigma_{n}roman_Σ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-Collection Schemas in Arithmetic. In: Macintyre A, Pacholski L, Paris J (eds.), Logic Colloquium ’77, volume 96 of Studies in logic and the foundations of mathematics. North-Holland, 1978 pp. 199–209.
  29. Girard JY. A new constructive logic: classical logic. Math. Structures in Comp. Science, 1991. 1:255–296. 10.1017/S0960129500001328.
  30. Möllerfeld M. Generalized inductive definitions. Ph.D. thesis, 2002. URL https://nbn-resolving.de/urn:nbn:de:hbz:6-85659549572.
  31. Bouncing Threads for Circular and Non-Wellfounded Proofs: Towards Compositionality with Circular Proofs. In: Baier C, Fisman D (eds.), LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022. ACM, 2022 pp. 63:1–63:13. 10.1145/3531130.3533375.
  32. Phase Semantics for Linear Logic with Least and Greatest Fixed Points. In: Dawar A, Guruswami V (eds.), 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2022, December 18-20, 2022, IIT Madras, Chennai, India, volume 250 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022 pp. 35:1–35:23. 10.4230/LIPICS.FSTTCS.2022.35.
  33. Curzi G, Das A. Computational expressivity of (circular) proofs with fixed points. In: 38th Symp. on Logic in Computer Science. 2023 pp. 1–13. 10.1109/LICS56636.2023.10175772.
  34. The Bedwyr system for model checking over syntactic expressions. In: Pfenning F (ed.), 21th Conf. on Automated Deduction (CADE), number 4603 in LNAI. Springer, New York, 2007 pp. 391–397. 10.1007/978-3-540-73595-3_28. URL http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/cade2007.pdf.
  35. Focused Inductive Theorem Proving. In: Giesl J, Hähnle R (eds.), Fifth International Joint Conference on Automated Reasoning, number 6173 in LNCS. 2010 pp. 278–292. 10.1007/978-3-642-14203-1_24.
  36. Manighetti M. Developing proof theory for proof exchange. Ph.D. thesis, Institut Polytechnique de Paris, 2022. URL https://theses.hal.science/tel-04289251.

Summary

We haven't generated a summary for this paper yet.