Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Jointly Optimal RIS Placement and Power Allocation for Underlay D2D Communications: An Outage Probability Minimization Approach (2312.13622v2)

Published 21 Dec 2023 in eess.SP, cs.IT, and math.IT

Abstract: In this paper, we study underlay device-to-device (D2D) communication systems empowered by a reconfigurable intelligent surface (RIS) for cognitive cellular networks. Considering Rayleigh fading channels and the general case where there exist both the direct and RIS-enabled D2D channels, the outage probability (OP) of the D2D communication link is presented in closed-form. Next, for the considered RIS-empowered underlaid D2D system, we frame an OP minimization problem. We target the joint optimization of the transmit power at the D2D source and the RIS placement, under constraints on the transmit power at the D2D source and on the limited interference imposed on the cellular user for two RIS deployment topologies. Due to the coupled optimization variables, the formulated optimization problem is extremely intractable. We propose an equivalent transformation which we are able to solve analytically. In the transformed problem, an expression for the average value of the signal-to-interference-noise ratio (SINR) at the D2D receiver is derived in closed-form. Our theoretical derivations are corroborated through simulation results, and various system design insights are deduced. It is indicatively showcased that the proposed RIS-empowered underlaid D2D system design outperforms the benchmark semi-adaptive optimal power and optimal distance schemes, offering $44\%$ and $20\%$ performance improvement, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. I. F. Akyildiz, A. Kak, and S. Nie, “6G and beyond: The future of wireless communications systems,” IEEE Access, vol. 8, pp. 133 995–134 030, Jul. 2020.
  2. F. Jameel, Z. Hamid, F. Jabeen, S. Zeadally, and M. A. Javed, “A survey of device-to-device communications: Research issues and challenges,” IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 2133–2168, Apr. 2018.
  3. J. Zhang et al., “Robust energy-efficient transmission for wireless-powered D2D communication networks,” IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 7951–7965, Aug. 2021.
  4. M. S. Gismalla et al., “Survey on device to device (D2D) communication for 5GB/6G networks: Concept, applications, challenges, and future directions,” IEEE Access, vol. 10, pp. 30 792–30 821, Mar. 2022.
  5. N. I. Miridakis, T. A. Tsiftsis, and G. C. Alexandropoulos, “MIMO underlay cognitive radio: Optimized power allocation, effective number of transmit antennas and harvest-transmit tradeoff,” IEEE Trans. Green Commun. Netw., vol. 2, no. 4, pp. 1101–1114, Dec. 2018.
  6. N. I. Miridakis, T. A. Tsiftsis, G. C. Alexandropoulos, and M. Debbah, “Green cognitive relaying: Opportunistically switching between data transmission and energy harvesting,” IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3725–3738, Dec. 2016.
  7. ——, “Simultaneous spectrum sensing and data reception for cognitive spatial multiplexing distributed systems,” IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 3313–3327, May 2017.
  8. V. N. Q. Bao, T. Q. Duong, D. B. da Costa, G. C. Alexandropoulos, and A. Nallanathan, “Cognitive amplify-and-forward relaying with best relay selection in non-identical Rayleigh fading,” IEEE Trans. Commun., vol. 17, no. 3, pp. 475–478, Mar. 2013.
  9. K. Ho-Van, P. C. Sofotasios, G. C. Alexandropoulos, and S. Freear, “Bit error rate of underlay decode-and-forward cognitive networks with best relay selection,” J. Commun. Netw.,, vol. 17, no. 2, pp. 162–171, Apr. 2015.
  10. T. T. Duy, G. C. Alexandropoulos, T. T. Vu, N.-S. Vo, and T. Q. Duong, “Outage performance of cognitive cooperative networks with relay selection over double-Rayleigh fading channels,” IET Commun., vol. 10, no. 1, pp. 57–64, Jan. 2016.
  11. M. Jian et al., “Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques,” Intelligent and Converged Networks, vol. 3, no. 1, pp. 1–32, Mar. 2022.
  12. C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable intelligent surfaces for energy efficiency in wireless communication,” IEEE Trans. Wireless Commun., vol. 18, no. 8, pp. 4157–4170, Aug. 2019.
  13. M. D. Renzo et al., “Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come,” EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1, pp. 1–20, May 2019.
  14. Ö. Özdogan, E. Björnson, and E. G. Larsson, “Intelligent reflecting surfaces: Physics, propagation, and pathloss modeling,” IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 581–585, May 2020.
  15. G. C. Alexandropoulos, G. Lerosey, M. Debbah, and M. Fink, “Reconfigurable intelligent surfaces and metamaterials: The potential of wave propagation control for 6G wireless communications,” IEEE ComSoc TCCN Newslett., vol. 6, no. 1, pp. 25–37, Jun. 2020.
  16. E. C. Strinati et al., “Reconfigurable intelligent and sustainable wireless environments for 6G smart connectivity,” IEEE Commun. Mag., vol. 59, no. 10, pp. 99–105, Oct. 2021.
  17. G. C. Alexandropoulos, N. Shlezinger, and P. del Hougne, “Reconfigurable intelligent surfaces for rich scattering wireless communications: Recent experiments, challenges, and opportunities,” IEEE Commun. Mag., vol. 59, no. 6, pp. 28–34, Jun. 2021.
  18. R. Liu, G. C. Alexandropoulos, Q. Wu, M. Jian, and Y. Liu, “How can reconfigurable intelligent surfaces drive 5G-advanced wireless networks: A standardization perspective,” in Proc. IEEE/CIC Int. Conf. Commun. China, Foshan, China, Aug. 2021.
  19. I. Yildirim, F. Kilinc, E. Basar, and G. C. Alexandropoulos, “Hybrid RIS-empowered reflection and decode-and-forward relaying for coverage extension,” IEEE Trans. Commun., vol. 25, no. 5, pp. 1692–1696, May 2021.
  20. G. C. Alexandropoulos et al., “Smart wireless environments enabled by RISs: Deployment scenarios and two key challenges,” in Proc. Joint European Conference on Networks and Communications & 6G Summit, Grenoble, France, Jun. 2022.
  21. K. Keykhosravi et al., “Leveraging RIS-enabled smart signal propagation for solving infeasible localization problems: Scenarios, key research directions, and open challenges,” IEEE Veh. Technol. Mag., pp. 2–10, 2023.
  22. S. P. Chepuri et al., “Integrated sensing and communications with reconfigurable intelligent surfaces: From signal modeling to processing,” IEEE Signal Process. Mag., vol. 40, no. 6, pp. 41–62, 2023.
  23. S. Zeng, H. Zhang, B. Di, Z. Han, and L. Song, “Reconfigurable intelligent surface (RIS) assisted wireless coverage extension: RIS orientation and location optimization,” IEEE Trans. Commun., vol. 25, no. 1, pp. 269–273, Jan. 2021.
  24. A. L. Moustakas, G. C. Alexandropoulos, and M. Debbah, “Reconfigurable intelligent surfaces and capacity optimization: A large system analysis,” IEEE Trans. Wireless Commun., early access, 2023.
  25. K. Ntontin et al., “Reconfigurable intelligent surface optimal placement in millimeter-wave networks,” IEEE Open J. Commun. Society, vol. 2, pp. 704–718, Mar. 2021.
  26. G. C. Alexandropoulos and E. Vlachos, “A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation,” in Proc. IEEE ICASSP, Barcelona, Spain, May 2020.
  27. G. C. Alexandropoulos et al., “Hybrid reconfigurable intelligent metasurfaces: Enabling simultaneous tunable reflections and sensing for 6G wireless communications,” IEEE Veh. Technol. Mag., pp. 2–11, 2023.
  28. X. Shao, C. You, W. Ma, X. Chen, and R. Zhang, “Target sensing with intelligent reflecting surface: Architecture and performance,” IEEE J. Sel. Areas Commun., vol. 40, no. 7, pp. 2070–2084, Jul. 2022.
  29. X. Guan, Q. Wu, and R. Zhang, “Joint power control and passive beamforming in IRS-assisted spectrum sharing,” IEEE Trans. Commun., vol. 24, no. 7, pp. 1553–1557, Jul. 2020.
  30. P. Yang, L. Yang, W. C. Kuang, and S. J. Wang, “Outage performance of cognitive radio networks with a coverage-limited RIS for interference elimination,” IEEE Wireless Commun. Lett., vol. 11, no. 8, pp. 1694–1698, Aug. 2022.
  31. G. Yu, X. Chen, C. Zhong, D. W. K. Ng, and Z. Zhang, “Design, analysis, and optimization of a large intelligent reflecting surface-aided B5G cellular Internet of Things,” IEEE Internet Things J., vol. 7, no. 9, pp. 8902–8916, Sep. 2020.
  32. D. Kudathanthirige, D. Gunasinghe, and G. Amarasuriya, “Performance analysis of intelligent reflective surfaces for wireless communication,” in Proc. IEEE ICC, Dublin, Ireland, Jun. 2020.
  33. V. Jamali, G. C. Alexandropoulos, R. Schober, and H. V. Poor, “Low-to-zero-overhead IRS reconfiguration: Decoupling illumination and channel estimation,” IEEE Trans. Commun., vol. 26, no. 4, pp. 932–936, Apr. 2022.
  34. Y. Ni et al., “Performance analysis for RIS-assisted D2D communication under Nakagami-m𝑚mitalic_m fading,” IEEE Trans. Veh. Technol., vol. 70, no. 6, pp. 5865–5879, May 2021.
  35. M. H. Khoshafa, H. Majid, T. M. Ngatched, and M. H. Ahmed, “Reconfigurable intelligent surfaces-aided physical layer security enhancement in D2D underlay communications,” IEEE Trans. Commun., vol. 25, no. 5, pp. 1443–1447, May 2021.
  36. W. Khalid, H. Yu, D.-T. Do, Z. Kaleem, and S. Noh, “RIS-aided physical layer security with full-duplex jamming in underlay D2D networks,” IEEE Access, vol. 9, pp. 99 667–99 679, Jul. 2021.
  37. D. Selimis, K. P. Peppas, G. C. Alexandropoulos, and F. I. Lazarakis, “On the performance analysis of RIS-empowered communications over Nakagami-m𝑚mitalic_m fading,” IEEE Trans. Commun., vol. 25, no. 7, pp. 2191–2195, Jul. 2021.
  38. G. C. Alexandropoulos, K. Katsanos, M. Wen, and D. B. da Costa, “Safeguarding MIMO communications with reconfigurable metasurfaces and artificial noise,” in Proc. IEEE ICC, Montreal, Canada, Jun. 2021.
  39. G. C. Alexandropoulos, K. D. Katsanos, M. Wen, and D. da Costa, “Counteracting eavesdropper attacks through reconfigurable intelligent surfaces: A new threat model and secrecy rate optimization,” arXiv preprint arXiv:2212.02263, 2022.
  40. J. Yuan, Y.-C. Liang, J. Joung, G. Feng, and E. G. Larsson, “Intelligent reflecting surface-assisted cognitive radio system,” IEEE Trans. Commun., vol. 69, no. 1, pp. 675–687, Jan. 2021.
  41. D. Xu, X. Yu, and R. Schober, “Resource allocation for intelligent reflecting surface-assisted cognitive radio networks,” in Proc. IEEE SPAWC, Atlanta, GA, USA, May 2020, pp. 1–5.
  42. L. Zhang e al., “Intelligent reflecting surface aided MIMO cognitive radio systems,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 11 445–11 457, Oct. 2020.
  43. L. Zhang, C. Pan, Y. Wang, H. Ren, and K. Wang, “Robust beamforming design for intelligent reflecting surface aided cognitive radio systems with imperfect cascaded CSI,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 1, pp. 186–201, Mar. 2022.
  44. S. F. Zamanian, S. M. Razavizadeh, and Q. Wu, “Vertical beamforming in intelligent reflecting surface-aided cognitive radio networks,” IEEE Wireless Commun. Lett., vol. 10, no. 9, pp. 1919–1923, Sep. 2021.
  45. S. Gong, Z. Yang, C. Xing, J. An, and L. Hanzo, “Beamforming optimization for intelligent reflecting surface-aided SWIPT IoT networks relying on discrete phase shifts,” IEEE Internet Things J., vol. 8, no. 10, pp. 8585–8602, Dec. 2021.
  46. L. Dong, H. M. Wang, H. Xiao, and J. Bai, “Secure intelligent reflecting surface assisted MIMO cognitive radio transmission,” in Proc. IEEE WCNC, Nanjing, China, Mar. 2021.
  47. Y. Chen et al., “Reconfigurable intelligent surface assisted device-to-device communications,” IEEE Trans. Wireless Commun., vol. 20, no. 5, pp. 2792–2804, May 2021.
  48. G. Yang et al., “Reconfigurable intelligent surface empowered device-to-device communication underlaying cellular networks,” IEEE Trans. Commun., vol. 69, no. 11, pp. 7790–7805, Aug. 2021.
  49. J. Jose, A. Agarwal, V. Bhatia, and O. Krejcar, “Outage probability minimization based power control and channel allocation in underlay D2D-NOMA for IoT networks,” Transactions on Emerging Telecommunications Technologies, p. e4568, Jun. 2022.
  50. F. Xu, Z. Ye, H. Cao, and Z. Hu, “Sum-rate optimization for IRS-aided D2D communication underlaying cellular networks,” IEEE Access, vol. 10, pp. 48 499–48 509, May 2022.
  51. X. Xie et al., “A joint optimization framework for IRS-assisted energy self-sustainable IoT networks,” IEEE Internet Things J., vol. 9, no. 15, pp. 13 767–13 779, Jan. 2022.
  52. S. Ghose, D. Mishra, S. P. Maity, and G. C. Alexandropoulos, “RIS reflection and placement optimisation for underlay D2D communications in cognitive cellular networks,” in Proc. IEEE ICASSP, Rhodes Island, Greece, Jun. 2023, pp. 1–5.
  53. Y. Kawai and S. Sugiura, “QoS-constrained optimization of intelligent reflecting surface aided secure energy-efficient transmission,” IEEE Trans. Veh. Technol., vol. 70, no. 5, pp. 5137–5142, May 2021.
  54. Q. Wang, F. Zhou, R. Q. Hu, and Y. Qian, “Energy efficient robust beamforming and cooperative jamming design for IRS-assisted MISO networks,” IEEE Trans. Wireless Commun., vol. 20, no. 4, pp. 2592–2607, Apr. 2021.
  55. X. Wu et al., “Secure and energy efficient transmission for IRS-assisted cognitive radio networks,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 1, pp. 170–185, Sep. 2022.
  56. K. K. Nguyen, S. R. Khosravirad, D. B. da Costa, L. D. Nguyen, and T. Q. Duong, “Reconfigurable intelligent surface-assisted multi-UAV networks: Efficient resource allocation with deep reinforcement learning,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 3, pp. 358–368, Apr. 2022.
  57. G. C. Alexandropoulos et al., “Pervasive machine learning for smart radio environments enabled by reconfigurable intelligent surfaces,” Proc. IEEE, vol. 110, no. 9, pp. 1494–1525, Sep. 2022.
  58. H. Yu, H. D. Tuan, A. A. Nasir, T. Q. Duong, and H. V. Poor, “Joint design of reconfigurable intelligent surfaces and transmit beamforming under proper and improper Gaussian signaling,” IEEE J. Sel. Topics Signal Process., vol. 38, no. 11, pp. 2589–2603, Nov. 2020.
  59. Q. Wu and R. Zhang, “Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT under QoS constraints,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1735–1748, Aug. 2020.
  60. G. C. Alexandropoulos et al., “RIS-enabled smart wireless environments: Deployment scenarios, network architecture, bandwidth and area of influence,” EURASIP J. Wireless Commun. Netw., to appear, 2023.
  61. A. Rabault et al., “On the tacit linearity assumption in common cascaded models of RIS-parametrized wireless channels,” arXiv preprint arXiv:2302.04993, 2023.
  62. D. Mishra and S. De, “Optimal power allocation and relay placement for wireless information and RF power transfer,” in Proc. IEEE ICC, Kuala Lumpur, Malaysia, May 2016.
  63. C. You, B. Zheng, and R. Zhang, “Fast beam training for IRS-assisted multiuser communications,” IEEE Wireless Commun. Lett., vol. 9, no. 11, pp. 1845–1849, Nov. 2020.
  64. X. Wei, D. Shen, and L. Dai, “Channel estimation for RIS assisted wireless communications: Part II- an improved method based on double-structured sparsity,” IEEE Trans. Commun., vol. 25, no. 5, pp. 1402–1407, May 2021.
  65. S. W. Ellingson, “Path loss in reconfigurable intelligent surface-enabled channels,” in Proc. IEEE PIMRC, Helsinki, Finland, 2021, pp. 829–835.
  66. S. Naduvilpattu and N. B. Mehta, “Optimal energy-efficient antenna selection and power allocation for interference-outage constrained under spectrum sharing,” IEEE Trans. Commun., vol. 70, no. 9, Sep. 2022.
  67. S. Atapattu et al., “Reconfigurable intelligent surface assisted two-way communications: Performance analysis and optimization,” IEEE Trans. Commun., vol. 68, no. 10, pp. 6552–6567, Jul. 2020.
  68. D. Sadhwani, R. N. Yadav, and S. Aggarwal, “Tighter bounds on the Gaussian Q𝑄Qitalic_Q function and its application in Nakagami- m𝑚{m}italic_m fading channel,” IEEE Wireless Commun. Lett., vol. 6, no. 5, pp. 574–577, Oct. 2017.
  69. “Approximations for Mean and Variance of a Ratio,” https://www.stat.cmu.edu/ hseltman/files/ratio.pdf.
  70. “Two-moment Approximations for Maxima,” http://www.columbia.edu/ ww2040/twomoment.pdf.
  71. X. Kang, Y. C. Liang, and H. K. Garg, “Outage probability minimization under both the transmit and interference power constraints for fading channels in cognitive radio networks,” in Proc. IEEE ICC Wkshps, Beijing, China, 2008, pp. 482–486.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com