Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy Efficiency Maximization for Intelligent Surfaces Aided Massive MIMO with Zero (2312.13563v1)

Published 21 Dec 2023 in cs.IT, eess.SP, and math.IT

Abstract: In this work, we address the energy efficiency (EE) maximization problem in a downlink communication system utilizing reconfigurable intelligent surface (RIS) in a multi-user massive multiple-input multiple-output (mMIMO) setup with zero-forcing (ZF) precoding. The channel between the base station (BS) and RIS operates under a Rician fading with Rician factor K1. Since systematically optimizing the RIS phase shifts in each channel coherence time interval is challenging and burdensome, we employ the statistical channel state information (CSI)-based optimization strategy to alleviate this overhead. By treating the RIS phase shifts matrix as a constant over multiple channel coherence time intervals, we can reduce the computational complexity while maintaining an interesting performance. Based on an ergodic rate (ER) lower bound closed-form, the EE optimization problem is formulated. Such a problem is non-convex and challenging to tackle due to the coupled variables. To circumvent such an obstacle, we explore the sequential optimization approach where the power allocation vector p, the number of antennas M, and the RIS phase shifts v are separated and sequentially solved iteratively until convergence. With the help of the Lagrangian dual method, fractional programming (FP) techniques, and Lemma 1, insightful compact closed-form expressions for each of the three optimization variables are derived. Simulation results validate the effectiveness of the proposed method across different generalized channel scenarios, including non-line-of-sight (NLoS) and partially line-of-sight (LoS) conditions. This underscores its potential to significantly reduce power consumption, decrease the number of active antennas at the base station, and effectively incorporate RIS structure in mMIMO communication setup with just statistical CSI knowledge.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. S. Gong, X. Lu, D. T. Hoang, D. Niyato, L. Shu, D. I. Kim, and Y.-C. Liang, “Toward Smart Wireless Communications via Intelligent Reflecting Surfaces: A Contemporary Survey,” IEEE Communications Surveys and Tutorials, vol. 22, no. 4, pp. 2283–2314, 2020.
  2. Q. Wu and R. Zhang, “Towards Smart and Reconfigurable Environment: Intelligent Reflecting Surface Aided Wireless Network,” IEEE Communications Magazine, vol. 58, no. 1, pp. 106–112, 2020.
  3. W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The Road Towards 6G: A Comprehensive Survey,” IEEE Open Journal of the Communications Society, vol. 2, pp. 334–366, 2021.
  4. C. D. Alwis, A. Kalla, Q.-V. Pham, P. Kumar, K. Dev, W.-J. Hwang, and M. Liyanage, “Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research,” IEEE Open Journal of the Communications Society, vol. 2, pp. 836–886, 2021.
  5. Y. He, Y. Cai, H. Mao, and G. Yu, “RIS-Assisted Communication Radar Coexistence: Joint Beamforming Design and Analysis,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 7, pp. 2131–2145, July 2022.
  6. R. Liu, M. Li, Y. Liu, Q. Wu, and Q. Liu, “Joint Transmit Waveform and Passive Beamforming Design for RIS-Aided DFRC Systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 5, pp. 995–1010, Aug. 2022.
  7. J. Kang, H. Wymeersch, C. Fischione, G. Seco-Granados, and S. Kim, “Optimized Switching Between Sensing and Communication for mmWave MU-MISO Systems,” in 2022 IEEE International Conference on Communications Workshops (ICC Workshops), 2022, pp. 498–503.
  8. W. Lv, J. Bai, Q. Yan, and H. M. Wang, “RIS-Assisted Green Secure Communications: Active RIS or Passive RIS?” IEEE Wireless Communications Letters, vol. 12, no. 2, pp. 237–241, 2023.
  9. H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson, “Weighted Sum-Rate Maximization for Reconfigurable Intelligent Surface Aided Wireless Networks,” IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 3064–3076, 2020.
  10. T. Ji, M. Hua, C. Li, Y. Huang, and L. Yang, “Robust Max-Min Fairness Transmission Design for IRS-Aided Wireless Network Considering User Location Uncertainty,” IEEE Transactions on Communications, vol. 71, no. 8, pp. 4678–4693, 2023.
  11. H. Xie, J. Xu, and Y.-F. Liu, “Max-Min Fairness in IRS-Aided Multi-Cell MISO Systems With Joint Transmit and Reflective Beamforming,” IEEE Transactions on Wireless Communications, vol. 20, no. 2, pp. 1379–1393, 2021.
  12. T. Jiang and W. Yu, “Interference Nulling Using Reconfigurable Intelligent Surface,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 5, pp. 1392–1406, 2022.
  13. C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication,” IEEE Transactions on Wireless Communications, vol. 18, no. 8, pp. 4157–4170, 2019.
  14. M. Zeng, E. Bedeer, O. A. Dobre, P. Fortier, Q.-V. Pham, and W. Hao, “Energy-Efficient Resource Allocation for IRS-Assisted Multi-Antenna Uplink Systems,” IEEE Wireless Communications Letters, vol. 10, no. 6, pp. 1261–1265, 2021.
  15. L. You, J. Xiong, D. W. K. Ng, C. Yuen, W. Wang, and X. Gao, “Energy Efficiency and Spectral Efficiency Tradeoff in RIS-Aided Multiuser MIMO Uplink Transmission,” IEEE Transactions on Signal Processing, vol. 69, pp. 1407–1421, 2021.
  16. M. Forouzanmehr, S. Akhlaghi, A. Khalili, and Q. Wu, “Energy Efficiency Maximization for IRS-Assisted Uplink Systems: Joint Resource Allocation and Beamforming Design,” IEEE Communications Letters, vol. 25, no. 12, pp. 3932–3936, 2021.
  17. R. K. Fotock, A. Zappone, and M. D. Renzo, “Energy Efficiency in RIS-Aided Wireless Networks: Active or Passive RIS?” 2023.
  18. K. Zhi, C. Pan, H. Ren, and K. Wang, “Ergodic Rate Analysis of Reconfigurable Intelligent Surface-Aided Massive MIMO Systems With ZF Detectors,” IEEE Communications Letters, vol. 26, no. 2, pp. 264–268, 2022.
  19. K. Zhi, C. Pan, G. Zhou, H. Ren, and K. Wang, “Analysis and Optimization of RIS-aided Massive MIMO Systems with Statistical CSI,” in 2021 IEEE/CIC International Conference on Communications in China (ICCC Workshops), 2021, pp. 153–158.
  20. A. Subhash, A. Kammoun, A. Elzanaty, S. Kalyani, Y. H. Al-Badarneh, and M.-S. Alouini, “Optimal Phase Shift Design for Fair Allocation in RIS-Aided Uplink Network Using Statistical CSI,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 8, pp. 2461–2475, 2023.
  21. C. Yang, K. Yu, and X. Yu, “Energy Efficiency Optimization for Distributed RIS-Assisted MISO System Based on Statistical CSI,” in 2022 IEEE 22nd International Conference on Communication Technology (ICCT), 2022, pp. 875–879.
  22. H. Ren, X. Liu, C. Pan, Z. Peng, and J. Wang, “Performance Analysis for RIS-Aided Secure Massive MIMO Systems With Statistical CSI,” IEEE Wireless Communications Letters, vol. 12, no. 1, pp. 124–128, 2023.
  23. E. Björnson and L. Sanguinetti, “Rayleigh Fading Modeling and Channel Hardening for Reconfigurable Intelligent Surfaces,” IEEE Wireless Communications Letters, vol. 10, no. 4, pp. 830–834, 2021.
  24. E. Björnson, O. T. Demir, and L. Sanguinetti, “A Primer on Near-Field Beamforming for Arrays and Reconfigurable Intelligent Surfaces,” in 2021 55th Asilomar Conference on Signals, Systems, and Computers, 2021, pp. 105–112.
  25. Y. Han, W. Tang, S. Jin, C.-K. Wen, and X. Ma, “Large Intelligent Surface-Assisted Wireless Communication Exploiting Statistical CSI,” IEEE Transactions on Vehicular Technology, vol. 68, no. 8, pp. 8238–8242, 2019.
  26. H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems,” IEEE Transactions on Communications, vol. 61, no. 4, pp. 1436–1449, 2013.
  27. Z. Yang, M. Chen, W. Saad, W. Xu, M. Shikh-Bahaei, H. V. Poor, and S. Cui, “Energy-Efficient Wireless Communications With Distributed Reconfigurable Intelligent Surfaces,” IEEE Transactions on Wireless Communications, vol. 21, no. 1, pp. 665–679, 2022.
  28. K. Shen and W. Yu, “Fractional Programming for Communication Systems—Part II: Uplink Scheduling via Matching,” IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2631–2644, 2018.
  29. Y. Jong, “An Efficient Global Optimization Algorithm for Nonlinear Sum-of-Ratios Problem,” Optimization Online, 2012.
  30. K. Shen and W. Yu, “Fractional Programming for Communication Systems—Part I: Power Control and Beamforming,” IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2616–2630, 2018.
  31. Z.-q. Luo, W.-k. Ma, A. M.-c. So, Y. Ye, and S. Zhang, “Semidefinite Relaxation of Quadratic Optimization Problems,” IEEE Signal Processing Magazine, vol. 27, no. 3, pp. 20–34, 2010.
  32. H. Li, J. Cheng, Z. Wang, and H. Wang, “Joint Antenna Selection and Power Allocation for an Energy-efficient Massive MIMO System,” IEEE Wireless Communications Letters, vol. 8, no. 1, pp. 257–260, 2019.
  33. J. Tang, J. Luo, J. Ou, X. Zhang, N. Zhao, D. K. C. So, and K.-K. Wong, “Decoupling or Learning: Joint Power Splitting and Allocation in MC-NOMA With SWIPT,” IEEE Transactions on Communications, vol. 68, no. 9, pp. 5834–5848, 2020.
  34. E. Björnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Optimal Design of Energy-Efficient Multi-User MIMO Systems: Is Massive MIMO the Answer?” IEEE Transactions on Wireless Communications, vol. 14, no. 6, pp. 3059–3075, 2015.
  35. N. I. Miridakis, T. A. Tsiftsis, and R. Yao, “Zero Forcing Uplink Detection Through Large-Scale RIS: System Performance and Phase Shift Design,” IEEE Transactions on Communications, vol. 71, no. 1, pp. 569–579, 2023.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com