Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Brain as a complex system, harnessing systems neuroscience tools & notions for an empirical approach (2312.13478v1)

Published 20 Dec 2023 in q-bio.NC

Abstract: Finding general principles underlying brain function has been appealing to scientists. Indeed, in some branches of science like physics and chemistry (and to some degree biology) a general theory often can capture the essence of a wide range of phenomena. Whether we can find such principles in neuroscience, and [assuming they do exist] what those principles are, are important questions. Abstracting the brain as a complex system is one of the perspectives that may help us answer this question. While it is commonly accepted that the brain is a (or even the) prominent example of a complex system, the far reaching implications of this are still arguably overlooked in our approaches to neuroscientific questions. One of the reasons for the lack of attention could be the apparent difference in foci of investigations in these two fields -- neuroscience and complex systems. This thesis is an effort toward providing a bridge between systems neuroscience and complex systems by harnessing systems neuroscience tools & notions for building empirical approaches toward the brain as a complex system. Perhaps, in the spirit of searching for principles, we should abstract and approach the brain as a complex adaptive system as the more complete perspective (rather than just a complex system). In the end, the brain, even the most "complex system", need to survive in the environment. Indeed, in the field of complex adaptive systems, the intention is understanding very similar questions in nature. As an outlook, we also touch on some research directions pertaining to the adaptivity of the brain as well.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (387)
  1. Shervin Safavi “Brain as a Complex System, Harnessing Systems Neuroscience Tools & Notions for an Empirical Approach”, 2022 DOI: 10.15496/publikation-69434
  2. Yaneer Bar-Yam “Dynamics of Complex Systems”, Studies in Nonlinearity Boulder, CO: Westview Press, 2003
  3. Melanie Mitchell “Complexity: A Guided Tour” Oxford: Oxford University Press, 2011
  4. John H. Holland “Complexity: A Very Short Introduction” Oxford, United Kingdom: Oxford University Press, 2014
  5. Yaneer Bar-Yam “Why Complexity Is Different”, 2017 URL: https://necsi.edu/why-complexity-is-different
  6. Yoshiki Kuramoto “Self-Entrainment of a Population of Coupled Non-Linear Oscillators” In Int. Symp. Math. Probl. Theor. Phys., Lecture Notes in Physics Berlin, Heidelberg: Springer, 1975, pp. 420–422 DOI: 10.1007/BFb0013365
  7. Yoshiki Kuramoto “Chemical Oscillations, Waves, and Turbulence” Courier Corporation, 2003
  8. Patricia Smith Churchland and Terrence J. Sejnowski “The Computational Brain”, Computational Neuroscience Cambridge, Mass: MIT Press, 1992
  9. H.T. Siegelmann “Complex Systems Science and Brain Dynamics” In Frontiers in computational neuroscience 4, 2010 DOI: 10.3389/fncom.2010.00007
  10. G. Werner “Consciousness Viewed in the Framework of Brain Phase Space Dynamics, Criticality, and the Renormalization Group” In Chaos Soliton Fract 55, 2013, pp. 3–12 DOI: DOI 10.1016/j.chaos.2012.03.014
  11. O. Sporns, G. Tononi and G.M. Edelman “Connectivity and Complexity: The Relationship between Neuroanatomy and Brain Dynamics” In Neural Networks 13, 2000, pp. 909–922 DOI: Doi 10.1016/S0893-6080(00)00053-8
  12. W. Singer “The Brain, a Complex Self-organizing System” In Eur. Rev. 17.2, 2009, pp. 321–329 DOI: 10.1017/S1062798709000751
  13. Eckehard Olbrich, Peter Achermann and Thomas Wennekers “The Sleeping Brain as a Complex System” In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369.1952 Royal Society, 2011, pp. 3697–3707 DOI: 10.1098/rsta.2011.0199
  14. C. Koch “Systems Biology. Modular Biological Complexity” In Science 337, 2012, pp. 531–2 DOI: 10.1126/science.1218616
  15. “Complex Brain Networks: Graph Theoretical Analysis of Structural and Functional Systems” In Nature reviews. Neuroscience 10.3, 2009, pp. 186–98 DOI: 10.1038/nrn2575
  16. “Human Information Processing in Complex Networks” In Nat. Phys. Nature Publishing Group, 2020, pp. 1–9 DOI: 10.1038/s41567-020-0924-7
  17. Richard F. Betzel and Danielle S. Bassett “Multi-Scale Brain Networks” In NeuroImage 160, Functional Architecture of the Brain, 2017, pp. 73–83 DOI: 10.1016/j.neuroimage.2016.11.006
  18. “Understanding Complexity in the Human Brain” In Trends in cognitive sciences 15, 2011, pp. 200–9 DOI: 10.1016/j.tics.2011.03.006
  19. Gyorgy Buzsaki “Rhythms of the Brain” New York, USA: Oxford University Press, 2011
  20. D.R. Chialvo “Emergent Complex Neural Dynamics” In Nat Phys 6.10, 2010, pp. 744–750 DOI: Doi 10.1038/Nphys1803
  21. “The Small World of Psychopathology” In PLOS ONE 6.11 Public Library of Science, 2011, pp. e27407 DOI: 10.1371/journal.pone.0027407
  22. Martijn P. van den Heuvel and B.T.Thomas Yeo “A Spotlight on Bridging Microscale and Macroscale Human Brain Architecture” In Neuron 93.6, 2017, pp. 1248–1251 DOI: 10.1016/j.neuron.2017.02.048
  23. Lianne H. Scholtens and Martijn P. van den Heuvel “Multimodal Connectomics in Psychiatry: Bridging Scales From Micro to Macro” In Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 3.9, Computational Methods and Modeling in Psychiatry, 2018, pp. 767–776 DOI: 10.1016/j.bpsc.2018.03.017
  24. Martijn P. van den Heuvel, Lianne H. Scholtens and Ren S. Kahn “Multi-Scale Neuroscience of Psychiatric Disorders” In Biological Psychiatry, 2019 DOI: 10.1016/j.biopsych.2019.05.015
  25. Martijn P. Heuvel and Olaf Sporns “A Cross-Disorder Connectome Landscape of Brain Dysconnectivity” In Nat. Rev. Neurosci. 20.7, 2019, pp. 435 DOI: 10.1038/s41583-019-0177-6
  26. T.M. McKenna, T.A. McMullen and M.F. Shlesinger “The Brain as a Dynamic Physical System” In Neuroscience 60.3, 1994, pp. 587–605 DOI: 10.1016/0306-4522(94)90489-8
  27. Randall D. Beer “A Dynamical Systems Perspective on Agent-Environment Interaction” In Artificial Intelligence 72.1, 1995, pp. 173–215 DOI: 10.1016/0004-3702(94)00005-L
  28. “Dynamical Principles in Neuroscience” In Rev. Mod. Phys. 78.4, 2006, pp. 1213–1265 DOI: 10.1103/RevModPhys.78.1213
  29. Eugene M. Izhikevich “Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Computational Neuroscience)” Cambrige, Massachusetts, USA: The MIT Press, 2010
  30. “Neuronal Dynamics, From Single Neurons to Networks and Models of Cognition” University Printing House, Cambridge CB2 8BS, United Kingdom: Cambridge University Press, 2014
  31. “The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields” In PLoS computational biology 4.8, 2008, pp. e1000092 DOI: 10.1371/journal.pcbi.1000092
  32. “Large-Scale Model of Mammalian Thalamocortical Systems” In Proceedings of the National Academy of Sciences of the United States of America 105.9, 2008, pp. 3593–8 DOI: 10.1073/pnas.0712231105
  33. G. Deco, V.K. Jirsa and A.R. McIntosh “Emerging Concepts for the Dynamical Organization of Resting-State Activity in the Brain” In Nature reviews. Neuroscience 12, 2011, pp. 43–56 DOI: 10.1038/nrn2961
  34. “Reading a Neural Code” In Science 252.5014 American Association for the Advancement of Science, 1991, pp. 1854–1857 DOI: 10.1126/science.2063199
  35. “Reproducibility and Variability in Neural Spike Trains” In Science 275.5307 American Association for the Advancement of Science, 1997, pp. 1805–1808 DOI: 10.1126/science.275.5307.1805
  36. “Entropy and Information in Neural Spike Trains” In Phys. Rev. Lett. 80.1 American Physical Society, 1998, pp. 197–200 DOI: 10.1103/PhysRevLett.80.197
  37. Alexander Borst and Frédéric E. Theunissen “Information Theory and Neural Coding” In Nat. Neurosci. 2.11 Nature Publishing Group, 1999, pp. 947–957 DOI: 10.1038/14731
  38. “Spikes: Exploring the Neural Code” A Bradford Book, 1999
  39. G. Tononi “An Information Integration Theory of Consciousness” In BMC Neurosci. 5, 2004, pp. 42 DOI: 10.1186/1471-2202-5-42
  40. “Integrated Information in Discrete Dynamical Systems: Motivation and Theoretical Framework” In PLoS computational biology 4.6, 2008, pp. e1000091 DOI: 10.1371/journal.pcbi.1000091
  41. M. Oizumi, L. Albantakis and G. Tononi “From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0” In PLoS computational biology 10, 2014, pp. e1003588 DOI: 10.1371/journal.pcbi.1003588
  42. “Qualia: The Geometry of Integrated Information” In PLoS computational biology 5.8, 2009, pp. e1000462 DOI: 10.1371/journal.pcbi.1000462
  43. “Integrated Information Theory: From Consciousness to Its Physical Substrate” In Nature reviews. Neuroscience, 2016 DOI: 10.1038/nrn.2016.44
  44. James Sethna and Laboratory of Atomic and Solid State Physics James P. Sethna “Statistical Mechanics: Entropy, Order Parameters, and Complexity” OUP Oxford, 2006
  45. “Statistical Mechanics for Natural Flocks of Birds” In Proceedings of the National Academy of Sciences of the United States of America 109, 2012, pp. 4786–91 DOI: 10.1073/pnas.1118633109
  46. “Social Interactions Dominate Speed Control in Poising Natural Flocks near Criticality” In Proceedings of the National Academy of Sciences of the United States of America 111, 2014, pp. 7212–7 DOI: 10.1073/pnas.1324045111
  47. “The Statistical Mechanics of Twitter Communities” In J. Stat. Mech. 2019.9, 2019, pp. 093406 DOI: 10.1088/1742-5468/ab3af0
  48. Miguel A. Muñoz “Colloquium: Criticality and Dynamical Scaling in Living Systems” In Rev. Mod. Phys. 90.3, 2018, pp. 031001 DOI: 10.1103/RevModPhys.90.031001
  49. “A Quick and Easy Way to Estimate Entropy and Mutual Information for Neuroscience” In bioRxiv Cold Spring Harbor Laboratory, 2020, pp. 2020.08.04.236174 DOI: 10.1101/2020.08.04.236174
  50. T.D. Sanger “Neural Population Codes” In Curr. Opin. Neurobiol. 13, 2003, pp. 238–49
  51. M. Shamir “Emerging Principles of Population Coding: In Search for the Neural Code” In Curr. Opin. Neurobiol. 25C, 2014, pp. 140–148 DOI: 10.1016/j.conb.2014.01.002
  52. P. Fries “A Mechanism for Cognitive Dynamics: Neuronal Communication through Neuronal Coherence” In Trends in cognitive sciences 9, 2005, pp. 474–480 DOI: DOI 10.1016/j.tics.2005.08.011
  53. P. Fries “Rhythms for Cognition: Communication through Coherence” In Neuron 88, 2015, pp. 220–35 DOI: 10.1016/j.neuron.2015.09.034
  54. Christoph Von Der Malsburg, William A. Phillips and W. Singer “Malsburg, C: Dynamic Coordination in the Brain - From Neuron: From Neurons to Mind” Cambridge, Mass: The MIT Press, 2010
  55. “Observed Brain Dynamics” Oxford University Press, USA, 2007
  56. N.K. Logothetis “Intracortical Recordings and fMRI: An Attempt to Study Operational Modules and Networks Simultaneously” In NeuroImage 62.2, 2012, pp. 962–9 DOI: 10.1016/j.neuroimage.2012.01.033
  57. “Hippocampal–Cortical Interaction during Periods of Subcortical Silence” In Nature 491.7425 Nature Publishing Group, 2012, pp. 547–553 DOI: 10.1038/nature11618
  58. J.F. Ramirez-Villegas, N.K. Logothetis and M. Besserve “Diversity of Sharp-Wave-Ripple LFP Signatures Reveals Differentiated Brain-Wide Dynamical Events” In Proceedings of the National Academy of Sciences of the United States of America 112, 2015, pp. E6379–87 DOI: 10.1073/pnas.1518257112
  59. Cole Mathis, Tanmoy Bhattacharya and Sara Imari Walker “The Emergence of Life as a First-Order Phase Transition” In Astrobiology 17.3 Mary Ann Liebert, Inc., publishers, 2017, pp. 266–276 DOI: 10.1089/ast.2016.1481
  60. Dante R. Chialvo “Life at the Edge: Complexity and Criticality in Biological Function” In ArXiv181011737 Q-Bio, 2018 arXiv: http://arxiv.org/abs/1810.11737
  61. “Information Processing in Living Systems” In Annu Rev Conden Ma P 7, 2016, pp. 89–117 DOI: 10.1146/annurev-conmatphys-031214-014803
  62. “Are Biological Systems Poised at Criticality?” In J Stat Phys 144, 2011, pp. 268–302 DOI: 10.1007/s10955-011-0229-4
  63. “Optimal Dynamical Range of Excitable Networks at Criticality” In Nat Phys 2, 2006, pp. 348–352 DOI: DOI 10.1038/nphys289
  64. “Phase Transitions and Self-Organized Criticality in Networks of Stochastic Spiking Neurons” In Sci. Rep. 6, 2016, pp. 35831 DOI: 10.1038/srep35831
  65. Daniel B. Larremore, Woodrow L. Shew and Juan G. Restrepo “Predicting Criticality and Dynamic Range in Complex Networks: Effects of Topology” In Phys. Rev. Lett. 106.5 American Physical Society, 2011, pp. 058101 DOI: 10.1103/PhysRevLett.106.058101
  66. “Probing Spatial Inhomogeneity of Cholinergic Changes in Cortical State in Rat” In Sci. Rep. 9.1, 2019, pp. 9387 DOI: 10.1038/s41598-019-45826-4
  67. “Information Capacity and Transmission Are Maximized in Balanced Cortical Networks with Neuronal Avalanches” In The Journal of neuroscience : the official journal of the Society for Neuroscience 31.1, 2011, pp. 55–63 DOI: 10.1523/JNEUROSCI.4637-10.2011
  68. F. Vanni, M. Lukovic and P. Grigolini “Criticality and Transmission of Information in a Swarm of Cooperative Units” In Physical review letters 107, 2011, pp. 078103 DOI: ARTN 078103 DOI 10.1103/PhysRevLett.107.078103
  69. “Transmission of Information at Criticality” In Physica A 416, 2014, pp. 430–438 DOI: DOI 10.1016/j.physa.2014.08.066
  70. “Information Transfer and Criticality in the Ising Model on the Human Connectome” In PloS one 9, 2014, pp. e93616 DOI: 10.1371/journal.pone.0093616
  71. “Random Switching and Optimal Processing in the Perception of Ambiguous Signals” In Physical review letters 74, 1995, pp. 3077–3080 DOI: DOI 10.1103/PhysRevLett.74.3077
  72. G.S. Atwal “Statistical Mechanics of Multistable Perception” In bioRxiv, 2014 DOI: 10.1101/008177
  73. “Cortical Microcircuit Dynamics Mediating Binocular Rivalry: The Role of Adaptation in Inhibition” In Front Hum Neurosci 5, 2011, pp. 145 DOI: 10.3389/fnhum.2011.00145
  74. “Multi-Stable Perception Balances Stability and Sensitivity” In Frontiers in computational neuroscience 7, 2013, pp. 17 DOI: 10.3389/fncom.2013.00017
  75. “The Scientific Case for Brain Simulations” In Neuron 102.4, 2019, pp. 735–744 DOI: 10.1016/j.neuron.2019.03.027
  76. “Perspectives on Cognitive Neuroscience” In Science 242.4879 American Association for the Advancement of Science, 1988, pp. 741–745 DOI: 10.1126/science.3055294
  77. “Inferring Spike Trains from Local Field Potentials” In Journal of neurophysiology 99.3, 2008, pp. 1461–76 DOI: 10.1152/jn.00919.2007
  78. M. Rasch, N.K. Logothetis and G. Kreiman “From Neurons to Circuits: Linear Estimation of Local Field Potentials” In The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 2009, pp. 13785–96 DOI: 10.1523/JNEUROSCI.2390-09.2009
  79. C.Y. Li, M.M. Poo and Y. Dan “Burst Spiking of a Single Cortical Neuron Modifies Global Brain State” In Science 324.5927, 2009, pp. 643–6 DOI: 10.1126/science.1169957
  80. “Cortex-Wide BOLD fMRI Activity Reflects Locally-Recorded Slow Oscillation-Associated Calcium Waves” In eLife 6, 2017
  81. “Rapid Reconfiguration of the Functional Connectome after Chemogenetic Locus Coeruleus Activation” In Neuron 103.4, 2019, pp. 702–718.e5 DOI: 10.1016/j.neuron.2019.05.034
  82. M. Volgushev, S. Chauvette and I. Timofeev “Long-Range Correlation of the Membrane Potential in Neocortical Neurons during Slow Oscillation” In Progress in brain research 193, 2011, pp. 181–99 DOI: 10.1016/B978-0-444-53839-0.00012-0
  83. “Inhibitory Postsynaptic Potentials Carry Synchronized Frequency Information in Active Cortical Networks” In Neuron 47.3, 2005, pp. 423–35 DOI: 10.1016/j.neuron.2005.06.016
  84. “Modulation of Neuronal Interactions through Neuronal Synchronization” In Science 316, 2007, pp. 1609–12 DOI: 10.1126/science.1139597
  85. Michel Le Van Quyen “The Brainweb of Cross-Scale Interactions” In New Ideas in Psychology 29.2, 2011, pp. 57–63 DOI: 10.1016/j.newideapsych.2010.11.001
  86. “The Kuramoto Model: A Simple Paradigm for Synchronization Phenomena” In Rev. Mod. Phys. 77.1 American Physical Society, 2005, pp. 137–185 DOI: 10.1103/RevModPhys.77.137
  87. Michael Breakspear, Stewart Heitmann and Andreas Daffertshofer “Generative Models of Cortical Oscillations: Neurobiological Implications of the Kuramoto Model” In Front. Hum. Neurosci. 4 Frontiers, 2010 DOI: 10.3389/fnhum.2010.00190
  88. “Exploring the Nonlinear Dynamics of the Brain” In Journal of Physiology-Paris 97.4, Neuroscience and Computation, 2003, pp. 629–639 DOI: 10.1016/j.jphysparis.2004.01.019
  89. Michel Le Van Quyen “Disentangling the Dynamic Core: A Research Program for a Neurodynamics at the Large-Scale” In Biol. Res. 36.1 Sociedad de Biolog a de Chile, 2003, pp. 67–88 DOI: 10.4067/S0716-97602003000100006
  90. “Recurrent Neuronal Circuits in the Neocortex” In Current biology : CB 17, 2007, pp. R496–500 DOI: 10.1016/j.cub.2007.04.024
  91. Anthony J Bell “Levels and Loops: The Future of Artificial Intelligence and Neuroscience” In Phil.Trans. R. Soc. Lond.B Royal Society, 1999, pp. 8
  92. Anthony J. Bell “Towards a Cross-Level Theory of Neural Learning” In AIP Conference Proceedings 954.1 American Institute of Physics, 2007, pp. 56–73 DOI: 10.1063/1.2821301
  93. “Ephaptic Coupling of Cortical Neurons” In Nat. Neurosci. 14.2 Nature Publishing Group, 2011, pp. 217–223 DOI: 10.1038/nn.2727
  94. “Realistic Modeling of Mesoscopic Ephaptic Coupling in the Human Brain” In PLOS Computational Biology 16.6 Public Library of Science, 2020, pp. e1007923 DOI: 10.1371/journal.pcbi.1007923
  95. Hiba Sheheitli and Viktor K. Jirsa “A Mathematical Model of Ephaptic Interactions in Neuronal Fiber Pathways: Could There Be More than Transmission along the Tracts?” In Netw. Neurosci. 4.3 MIT Press, 2020, pp. 595–610 DOI: 10.1162/netn˙a˙00134
  96. “Ephaptic Coupling to Endogenous Electric Field Activity: Why Bother?” In Curr. Opin. Neurobiol. 31C, 2014, pp. 95–103 DOI: 10.1016/j.conb.2014.09.002
  97. Terrence J. Sejnowski, Patricia S. Churchland and J.Anthony Movshon “Putting Big Data to Good Use in Neuroscience” In Nat. Neurosci. 17.11 Nature Publishing Group, 2014, pp. 1440–1441 DOI: 10.1038/nn.3839
  98. M. Zeitler, P. Fries and S. Gielen “Assessing Neuronal Coherence with Single-Unit, Multi-Unit, and Local Field Potentials” In Neural computation 18, 2006, pp. 2256–81 DOI: 10.1162/neco.2006.18.9.2256
  99. Go Ashida, Hermann Wagner and Catherine E. Carr “Processing of Phase-Locked Spikes and Periodic Signals” In Analysis of Parallel Spike Trains, Springer Series in Computational Neuroscience Springer, Boston, MA, 2010, pp. 59–74 DOI: 10.1007/978-1-4419-5675-0˙4
  100. “The Pairwise Phase Consistency: A Bias-Free Measure of Rhythmic Neuronal Synchronization” In NeuroImage 51, 2010, pp. 112–22 DOI: 10.1016/j.neuroimage.2010.01.073
  101. “Improved Measures of Phase-Coupling between Spikes and the Local Field Potential” In Journal of computational neuroscience 33, 2012, pp. 53–75 DOI: 10.1007/s10827-011-0374-4
  102. “Measuring Directionality between Neuronal Oscillations of Different Frequencies” In NeuroImage 118, 2015, pp. 359–367 DOI: 10.1016/j.neuroimage.2015.05.044
  103. Z. Li, D. Cui and X. Li “Unbiased and Robust Quantification of Synchronization between Spikes and Local Field Potential” In Journal of neuroscience methods 269, 2016, pp. 33–8 DOI: 10.1016/j.jneumeth.2016.05.004
  104. Mohammad Zarei, Mehran Jahed and Mohammad Reza Daliri “Introducing a Comprehensive Framework to Measure Spike-LFP Coupling” In Front. Comput. Neurosci. 12, 2018 DOI: 10.3389/fncom.2018.00078
  105. “Neurophysiological Investigation of the Basis of the fMRI Signal” In Nature 412, 2001, pp. 150–7 DOI: 10.1038/35084005
  106. N.K. Logothetis “The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal” In The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 2003, pp. 3963–71
  107. N.K. Logothetis “What We Can Do and What We Cannot Do with fMRI” In Nature 453, 2008, pp. 869–78 DOI: 10.1038/nature06976
  108. “Neurophysiology of the BOLD fMRI Signal in Awake Monkeys” In Current biology : CB 18, 2008, pp. 631–40 DOI: 10.1016/j.cub.2008.03.054
  109. “Dopamine-Induced Dissociation of BOLD and Neural Activity in Macaque Visual Cortex” In Current biology : CB 24, 2014, pp. 2805–11 DOI: 10.1016/j.cub.2014.10.006
  110. “Temporal Kernel CCA and Its Application in Multimodal Neuronal Data Analysis” In Mach. Learn. 79.1-2, 2009, pp. 5–27 DOI: 10.1007/s10994-009-5153-3
  111. “Relationship between Neural and Hemodynamic Signals during Spontaneous Activity Studied with Temporal Kernel CCA” In Magnetic resonance imaging 28, 2010, pp. 1095–103 DOI: 10.1016/j.mri.2009.12.016
  112. Hans Liljenstroem “Mesoscopic Brain Dynamics” In Scholarpedia 7.9, 2012, pp. 4601 DOI: 10.4249/scholarpedia.4601
  113. G. Buzsaki, C.A. Anastassiou and C. Koch “The Origin of Extracellular Fields and Currents–EEG, ECoG, LFP and Spikes” In Nature reviews. Neuroscience 13.6, 2012, pp. 407–20 DOI: 10.1038/nrn3241
  114. “Modelling and Analysis of Local Field Potentials for Studying the Function of Cortical Circuits” In Nature reviews. Neuroscience 14.11, 2013, pp. 770–85 DOI: 10.1038/nrn3599
  115. O. Herreras “Local Field Potentials: Myths and Misunderstandings” In Front Neural Circuit 10, 2016, pp. 101 DOI: 10.3389/fncir.2016.00101
  116. “Investigating Large-Scale Brain Dynamics Using Field Potential Recordings: Analysis and Interpretation” In Nat. Neurosci., 2018, pp. 1 DOI: 10.1038/s41593-018-0171-8
  117. “Ensemble Patterns of Hippocampal CA3-CA1 Neurons during Sharp Wave–Associated Population Events” In Neuron 28.2, 2000, pp. 585–594 DOI: 10.1016/S0896-6273(00)00135-5
  118. “Role of Hippocampal CA2 Region in Triggering Sharp-Wave Ripples” In Neuron 91, 2016, pp. 1342–55 DOI: 10.1016/j.neuron.2016.08.008
  119. “Single-Unit Stability Using Chronically Implanted Multielectrode Arrays” In J. Neurophysiol. 102.2 American Physiological Society, 2009, pp. 1331–1339 DOI: 10.1152/jn.90920.2008
  120. “Fully Integrated Silicon Probes for High-Density Recording of Neural Activity” In Nature 551, 2017, pp. 232–236 DOI: 10.1038/nature24636
  121. Ashley L Juavinett, George Bekheet and Anne K Churchland “Chronically Implanted Neuropixels Probes Enable High-Yield Recordings in Freely Moving Mice” In eLife 8 eLife Sciences Publications, Ltd, 2019, pp. e47188 DOI: 10.7554/eLife.47188
  122. György Buzsáki “Large-Scale Recording of Neuronal Ensembles” In Nat. Neurosci. 7.5, 2004, pp. 446–451 DOI: 10.1038/nn1233
  123. Makoto Fukushima, Zenas C Chao and Naotaka Fujii “Studying Brain Functions with Mesoscopic Measurements: Advances in Electrocorticography for Non-Human Primates” In Current Opinion in Neurobiology 32, Large-Scale Recording Technology (32), 2015, pp. 124–131 DOI: 10.1016/j.conb.2015.03.015
  124. “High-Frequency Network Oscillation in the Hippocampus” In Science, 1992
  125. “Dissecting the Synapse- and Frequency-Dependent Network Mechanisms of In Vivo Hippocampal Sharp Wave-Ripples” In Neuron 100.5, 2018, pp. 1224–1240.e13 DOI: 10.1016/j.neuron.2018.09.041
  126. “Nonmonotonic Spatial Structure of Interneuronal Correlations in Prefrontal Microcircuits” In PNAS, 2018, pp. 201802356 DOI: 10.1073/pnas.1802356115
  127. “Flexible Resonance in Prefrontal Networks with Strong Feedback Inhibition” In PLOS Computational Biology 14.8 Public Library of Science, 2018, pp. e1006357 DOI: 10.1371/journal.pcbi.1006357
  128. “Prefrontal Oscillations Modulate the Propagation of Neuronal Activity Required for Working Memory” In Neurobiology of Learning and Memory 173, 2020, pp. 107228 DOI: 10.1016/j.nlm.2020.107228
  129. “Uncovering the Organization of Neural Circuits with Generalized Phase Locking Analysis” In PLOS Computational Biology 19.4 Public Library of Science, 2023, pp. e1010983 DOI: 10.1371/journal.pcbi.1010983
  130. V A Marčenko and L A Pastur “Distribution of Eigenvalues for Some Sets of Random Matrices” In Math. USSR Sb. 1.4, 1967, pp. 457–483 DOI: 10.1070/SM1967v001n04ABEH001994
  131. Greg W Anderson, Alice Guionnet and Ofer Zeitouni “An Introduction to Random Matrices” Cambridge; New York: Cambridge University Press, 2010 URL: http://dx.doi.org/10.1017/CBO9780511801334
  132. N.K. Logothetis “Neural-Event-Triggered fMRI of Large-Scale Neural Networks” In Curr. Opin. Neurobiol. 31C, 2014, pp. 214–222 DOI: 10.1016/j.conb.2014.11.009
  133. “A Thalamocortical Neural Mass Model of the EEG during NREM Sleep and Its Response to Auditory Stimulation” In PLOS Computational Biology 12.9 Public Library of Science, 2016, pp. e1005022 DOI: 10.1371/journal.pcbi.1005022
  134. Daniel V. Schroeder “An Introduction to Thermal Physics” San Francisco, CA: Pearson, 1999
  135. Claudio Castellano, Matteo Marsili and Alessandro Vespignani “Nonequilibrium Phase Transition in a Model for Social Influence” In Phys. Rev. Lett. 85.16 American Physical Society, 2000, pp. 3536–3539 DOI: 10.1103/PhysRevLett.85.3536
  136. “Neuronal Avalanches in Neocortical Circuits” In The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 2003, pp. 11167–77
  137. “Actin in Dendritic Spines Self-Organizes into a Critical State” In bioRxiv Cold Spring Harbor Laboratory, 2020, pp. 2020.04.22.054577 DOI: 10.1101/2020.04.22.054577
  138. “Single-Cell Membrane Potential Fluctuations Evince Network Scale-Freeness and Quasicriticality” In J. Neurosci., 2019, pp. 3163–18 DOI: 10.1523/JNEUROSCI.3163-18.2019
  139. “Differential Effects of Propofol and Ketamine on Critical Brain Dynamics” In bioRxiv Cold Spring Harbor Laboratory, 2020, pp. 2020.03.27.012070 DOI: 10.1101/2020.03.27.012070
  140. “Scale-Change Symmetry in the Rules Governing Neural Systems” In iScience 12, 2019, pp. 121–131 DOI: 10.1016/j.isci.2019.01.009
  141. A.M. Turing “I.—Computing Machinery and Intelligence” In Mind LIX, 1950, pp. 433–460 DOI: 10.1093/mind/LIX.236.433
  142. Takuma Tanaka, Takeshi Kaneko and Toshio Aoyagi “Recurrent Infomax Generates Cell Assemblies, Neuronal Avalanches, and Simple Cell-Like Selectivity” In Neural Computation 21.4, 2008, pp. 1038–1067 DOI: 10.1162/neco.2008.03-08-727
  143. “Information-Based Fitness and the Emergence of Criticality in Living Systems” In Proceedings of the National Academy of Sciences of the United States of America 111, 2014, pp. 10095–100 DOI: 10.1073/pnas.1319166111
  144. “Cooperation, Competition and the Emergence of Criticality in Communities of Adaptive Systems” In J. Stat. Mech. 2016.3, 2016, pp. 033203 DOI: 10.1088/1742-5468/2016/03/033203
  145. Pedro A.M. Mediano, Juan Carlos Farah and Murray Shanahan “Integrated Information and Metastability in Systems of Coupled Oscillators” In ArXiv160608313 Q-Bio, 2016 arXiv: http://arxiv.org/abs/1606.08313
  146. “The Emergence of Integrated Information, Complexity, and Consciousness at Criticality” In bioRxiv, 2019, pp. 521567 DOI: 10.1101/521567
  147. Heiko Hoffmann and David W. Payton “Optimization by Self-Organized Criticality” In Sci. Rep. 8.1 Nature Publishing Group, 2018, pp. 2358 DOI: 10.1038/s41598-018-20275-7
  148. “Pattern Recognition with Neuronal Avalanche Dynamics” In Phys. Rev. E 99.1, 2019, pp. 010302 DOI: 10.1103/PhysRevE.99.010302
  149. “Hierarchical Connectome Modes and Critical State Jointly Maximize Human Brain Functional Diversity” In Phys. Rev. Lett. 123.3 American Physical Society, 2019, pp. 038301 DOI: 10.1103/PhysRevLett.123.038301
  150. “Optimal Control of Excitable Systems near Criticality” In Phys. Rev. Research 2.3 American Physical Society, 2020, pp. 033450 DOI: 10.1103/PhysRevResearch.2.033450
  151. “Intrinsic timescales in the visual cortex change with selective attention and reflect spatial connectivity” In Nature communications 14.1 Nature Publishing Group UK London, 2023, pp. 1858 DOI: 10.1038/s41467-023-37613-7
  152. J.M. Beggs “The Criticality Hypothesis: How Local Cortical Networks Might Optimize Information Processing” In Philos T R Soc A 366, 2008, pp. 329–343 DOI: DOI 10.1098/rsta.2007.2092
  153. “The Functional Benefits of Criticality in the Cortex” In The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 19, 2013, pp. 88–100 DOI: 10.1177/1073858412445487
  154. Roxana Zeraati, Viola Priesemann and Anna Levina “Self-Organization Toward Criticality by Synaptic Plasticity” In Front. Phys. 9, 2021, pp. 103 DOI: 10.3389/fphy.2021.619661
  155. Roxana Zeraati “Studying Criticality and Its Different Measures in Neuroscience”, 2017
  156. “Earthquake Magnitude, Intensity, Energy, and Acceleration(Second Paper)” In Bulletin of the Seismological Society of America 46.2 GeoScienceWorld, 1956, pp. 105–145 URL: https://pubs.geoscienceworld.org/ssa/bssa/article/46/2/105/115777/Earthquake-magnitude-intensity-energy-and
  157. Bruce D. Malamud, Gleb Morein and Donald L. Turcotte “Forest Fires: An Example of Self-Organized Critical Behavior” In Science 281.5384 American Association for the Advancement of Science, 1998, pp. 1840–1842 DOI: 10.1126/science.281.5384.1840
  158. Theodore Edward Harris “The Theory of Branching Processes”, Grundlehren Der Mathematischen Wissenschaften Berlin Heidelberg: Springer-Verlag, 1963 URL: https://www.springer.com/gp/book/9783642518683
  159. J.P. Sethna, K.A. Dahmen and C.R. Myers “Crackling Noise” In Nature 410.6825, 2001, pp. 242–50 DOI: 10.1038/35065675
  160. “Universal Critical Dynamics in High Resolution Neuronal Avalanche Data” In Physical review letters 108, 2012, pp. 208102
  161. Laurence Aitchison, Nicola Corradi and Peter E. Latham “Zipf’s Law Arises Naturally When There Are Underlying, Unobserved Variables” In PLOS Computational Biology 12.12, 2016, pp. e1005110 DOI: 10.1371/journal.pcbi.1005110
  162. “Power-Law Statistics and Universal Scaling in the Absence of Criticality” In Phys. Rev. E 95.1, 2017, pp. 012413 DOI: 10.1103/PhysRevE.95.012413
  163. M. Breakspear “Dynamic Models of Large-Scale Brain Activity” In Nature neuroscience 20.3, 2017, pp. 340–352 DOI: 10.1038/nn.4497
  164. “Criticality in the Brain: A Synthesis of Neurobiology, Models and Cognition” In Progress in Neurobiology 158, 2017, pp. 132–152 DOI: 10.1016/j.pneurobio.2017.07.002
  165. “Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks” In Neural computation 16, 2004, pp. 1413–1436
  166. “Landau–Ginzburg Theory of Cortex Dynamics: Scale-free Avalanches Emerge at the Edge of Synchronization” In PNAS, 2018, pp. 201712989 DOI: 10.1073/pnas.1712989115
  167. M.O. Magnasco, O. Piro and G.A. Cecchi “Self-Tuned Critical Anti-Hebbian Networks” In Physical review letters 102, 2009, pp. 258102
  168. “Chaos and Correlated Avalanches in Excitatory Neural Networks with Synaptic Plasticity” In Phys. Rev. Lett. 118.9, 2017, pp. 098102 DOI: 10.1103/PhysRevLett.118.098102
  169. Karlis Kanders, Tom Lorimer and Ruedi Stoop “Avalanche and Edge-of-Chaos Criticality Do Not Necessarily Co-Occur in Neural Networks” In Chaos 27.4, 2017, pp. 047408 DOI: 10.1063/1.4978998
  170. D.J. Amit and Daniel J. Amit “Modeling Brain Function: The World of Attractor Neural Networks” Cambridge University Press, 1992
  171. “Thermodynamics and Signatures of Criticality in a Network of Neurons” In Proceedings of the National Academy of Sciences of the United States of America, 2015 DOI: 10.1073/pnas.1514188112
  172. “Signatures of Criticality Arise from Random Subsampling in Simple Population Models” In PLOS Computational Biology 13.10, 2017, pp. e1005718 DOI: 10.1371/journal.pcbi.1005718
  173. Joseph T. Lizier “The Local Information Dynamics of Distributed Computation in Complex Systems”, Springer Theses Berlin: Springer, 2013
  174. “Adaptation towards Scale-Free Dynamics Improves Cortical Stimulus Discrimination at the Cost of Reduced Detection” In PLoS computational biology 13, 2017, pp. e1005574 DOI: 10.1371/journal.pcbi.1005574
  175. “Sensory Communication” The MIT Press, 2012 DOI: 10.7551/mitpress/9780262518420.001.0001
  176. “Principles of Neural Coding” Boca Raton: CRC Press, 2013
  177. “Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images” In Nature 381, 1996, pp. 607–9 DOI: 10.1038/381607a0
  178. Eero P Simoncelli and Bruno A Olshausen “Natural Image Statistics and Neural Representation” In Annu. Rev. Neurosci. 24.1, 2001, pp. 1193–1216 DOI: 10.1146/annurev.neuro.24.1.1193
  179. Matthew Chalk, Olivier Marre and Gašper Tkačik “Toward a Unified Theory of Efficient, Predictive, and Sparse Coding” In Proc. Natl. Acad. Sci. U.S.A. 115.1, 2018, pp. 186–191 DOI: 10.1073/pnas.1711114115
  180. M. Boerlin, C.K. Machens and S. Deneve “Predictive Coding of Dynamical Variables in Balanced Spiking Networks” In PLoS computational biology 9, 2013, pp. e1003258 DOI: 10.1371/journal.pcbi.1003258
  181. M. Chalk, B. Gutkin and S. Deneve “Neural Oscillations as a Signature of Efficient Coding in the Presence of Synaptic Delays” In eLife 5, 2016 DOI: 10.7554/eLife.13824
  182. Koch Christof “The Quest for Consciousness: A Neurobiological Approach” Denver, Colo.: Roberts and Company Publishers, 2004
  183. N.K. Logothetis “Vision: A Window into Consciousness” In Sci Am 16.3, 2006, pp. 4–11 DOI: 10.1038/scientificamerican0906-4sp
  184. “The Neural Correlates of Consciousness: An Update” In Annals of the New York Academy of Sciences 1124.1, 2008, pp. 239–61 DOI: 10.1196/annals.1440.004
  185. Christof Koch “Consciousness: Confessions of a Romantic Reductionist” The MIT Press, 2012
  186. F. Crick “Visual Perception: Rivalry and Consciousness” In Nature 379.6565, 1996, pp. 485–6 DOI: 10.1038/379485a0
  187. “Perceptual Rivalry across Animal Species” In J. Comp. Neurol. n/a.n/a, 2020 DOI: 10.1002/cne.24939
  188. “Visual Competition” In Nat. Rev. Neurosci. 3.1, 2002, pp. 13–21 DOI: 10.1038/nrn701
  189. Theofanis I. Panagiotaropoulos, Vishal Kapoor and Nikos K. Logothetis “Subjective Visual Perception: From Local Processing to Emergent Phenomena of Brain Activity” In Philosophical Transactions of the Royal Society B: Biological Sciences 369.1641 Royal Society, 2014, pp. 20130534 DOI: 10.1098/rstb.2013.0534
  190. “Neural Correlates of Consciousness: Progress and Problems” In Nat. Rev. Neurosci. 17.5 Nature Publishing Group, 2016, pp. 307–321 DOI: 10.1038/nrn.2016.22
  191. “No Binocular Rivalry in the LGN of Alert Macaque Monkeys” In Vision research 36.9, 1996, pp. 1225–1234 DOI: Doi 10.1016/0042-6989(95)00232-4
  192. “The Role of Temporal Cortical Areas in Perceptual Organization” In Proceedings of the National Academy of Sciences of the United States of America 94.7, 1997, pp. 3408–13
  193. “Neuronal Discharges and Gamma Oscillations Explicitly Reflect Visual Consciousness in the Lateral Prefrontal Cortex” In Neuron 74.5, 2012, pp. 924–35 DOI: 10.1016/j.neuron.2012.04.013
  194. “Decoding Internally Generated Transitions of Conscious Contents in the Prefrontal Cortex without Subjective Reports” In Nat Commun 13.1 Nature Publishing Group, 2022, pp. 1535 DOI: 10.1038/s41467-022-28897-2
  195. J.F. Hipp, A.K. Engel and M. Siegel “Oscillatory Synchronization in Large-Scale Cortical Networks Predicts Perception” In Neuron 69, 2011, pp. 387–96 DOI: 10.1016/j.neuron.2010.12.027
  196. “Rhythms of Consciousness: Binocular Rivalry Reveals Large-Scale Oscillatory Network Dynamics Mediating Visual Perception” In PLoS One 4.7, 2009, pp. e6142 DOI: 10.1371/journal.pone.0006142
  197. “Changes in Functional Connectivity Support Conscious Object Recognition” In NeuroImage 63.4, 2012, pp. 1909–17 DOI: 10.1016/j.neuroimage.2012.07.056
  198. M. Wang, D. Arteaga and B.J. He “Brain Mechanisms for Simple Perception and Bistable Perception” In Proceedings of the National Academy of Sciences of the United States of America 110.35, 2013, pp. E3350–9 DOI: 10.1073/pnas.1221945110
  199. E.D. Lumer, K.J. Friston and G. Rees “Neural Correlates of Perceptual Rivalry in the Human Brain” In Science 280.5371, 1998, pp. 1930–4 DOI: 10.1126/science.280.5371.1930
  200. “Increased Synchronization of Neuromagnetic Responses during Conscious Perception” In The Journal of neuroscience : the official journal of the Society for Neuroscience 19.13, 1999, pp. 5435–48
  201. H. Bahmani, N. Logothetis and G. Keliris “Neural Correlates of Binocular Rivalry in Parietal Cortex”, 2011
  202. “Multistability, Perceptual Value, and Internal Foraging” In Neuron, 2022 DOI: 10.1016/j.neuron.2022.07.024
  203. “Oscillations in the Perception of Ambiguous Patterns - a Model Based on Synergetics” In Biological cybernetics 61.4, 1989, pp. 279–287 DOI: Doi 10.1007/Bf00203175
  204. “Attractors and Noise: Twin Drivers of Decisions and Multistability” In NeuroImage 52, 2010, pp. 740–751 DOI: DOI 10.1016/j.neuroimage.2009.12.126
  205. “Network Architecture of the Long-Distance Pathways in the Macaque Brain” In Proceedings of the National Academy of Sciences of the United States of America 107.30, 2010, pp. 13485–90 DOI: 10.1073/pnas.1008054107
  206. “An Integrative Theory of Prefrontal Cortex Function” In Annual review of neuroscience 24, 2001, pp. 167–202 DOI: 10.1146/annurev.neuro.24.1.167
  207. Janis Karan Hesse and Doris Y Tsao “A New No-Report Paradigm Reveals That Face Cells Encode Both Consciously Perceived and Suppressed Stimuli” In eLife 9 eLife Sciences Publications, Ltd, 2020, pp. e58360 DOI: 10.7554/eLife.58360
  208. “Binocular Rivalry: Frontal Activity Relates to Introspection and Action but Not to Perception” In The Journal of neuroscience : the official journal of the Society for Neuroscience 34.5, 2014, pp. 1738–47 DOI: 10.1523/JNEUROSCI.4403-13.2014
  209. “Is the Frontal Lobe Involved in Conscious Perception?” In Front. Psychol. 5, 2014 DOI: 10.3389/fpsyg.2014.01063
  210. David Leopold, A. Maier and N.K. Logothetis “Measuring Subjective Visual Perception in the Nonhuman Primate” In Journal of Consciousness Studies 10.9-10, 2003, pp. 115–130
  211. Gideon Rothschild, Israel Nelken and Adi Mizrahi “Functional Organization and Population Dynamics in the Mouse Primary Auditory Cortex” In Nat. Neurosci. 13.3 Nature Publishing Group, 2010, pp. 353–360 DOI: 10.1038/nn.2484
  212. “Measuring and Interpreting Neuronal Correlations” In Nature neuroscience 14.7, 2011, pp. 811–9 DOI: 10.1038/nn.2842
  213. “Spatial and Temporal Scales of Neuronal Correlation in Primary Visual Cortex” In The Journal of neuroscience : the official journal of the Society for Neuroscience 28.48, 2008, pp. 12591–603 DOI: 10.1523/JNEUROSCI.2929-08.2008
  214. “Spatial and Temporal Scales of Neuronal Correlation in Visual Area V4” In The Journal of neuroscience : the official journal of the Society for Neuroscience 33.12, 2013, pp. 5422–32 DOI: 10.1523/JNEUROSCI.4782-12.2013
  215. Daniel J. Denman and Diego Contreras “The Structure of Pairwise Correlation in Mouse Primary Visual Cortex Reveals Functional Organization in the Absence of an Orientation Map” In Cereb Cortex 24.10 Oxford Academic, 2014, pp. 2707–2720 DOI: 10.1093/cercor/bht128
  216. “The Spatial Structure of Correlated Neuronal Variability” In Nature neuroscience 20, 2017, pp. 107–114 DOI: 10.1038/nn.4433
  217. “Topography of Pyramidal Neuron Intrinsic Connections in Macaque Monkey Prefrontal Cortex (Areas 9 and 46)” In J. Comp. Neurol. 338.3, 1993, pp. 360–376 DOI: 10.1002/cne.903380304
  218. Y. Amir, M. Harel and Rafael Malach “Cortical Hierarchy Reflected in the Organization of Intrinsic Connections in Macaque Monkey Visual Cortex” In J. Comp. Neurol. 334.1, 1993, pp. 19–46 DOI: 10.1002/cne.903340103
  219. Jennifer S. Lund, Takashi Yoshioka and Jonathan B. Levitt “Comparison of Intrinsic Connectivity in Different Areas of Macaque Monkey Cerebral Cortex” In Cereb Cortex 3.2, 1993, pp. 148–162 DOI: 10.1093/cercor/3.2.148
  220. “Intrinsic Circuit Organization of the Major Layers and Sublayers of the Dorsolateral Prefrontal Cortex in the Rhesus Monkey” In J. Comp. Neurol. 359.1, 1995, pp. 131–143 DOI: 10.1002/cne.903590109
  221. “Intrinsic Connections in the Macaque Inferior Temporal Cortex” In J. Comp. Neurol. 368.4, 1996, pp. 467–486 DOI: 10.1002/(SICI)1096-9861(19960513)368:4¡467::AID-CNE1¿3.0.CO;2-2
  222. Hisashi Tanigawa, QuanXin Wang and Ichiro Fujita “Organization of Horizontal Axons in the Inferior Temporal Cortex and Primary Visual Cortex of the Macaque Monkey” In Cerebral Cortex 15.12, 2005, pp. 1887–1899 DOI: 10.1093/cercor/bhi067
  223. “Bistability of Prefrontal States Gates Access to Consciousness” In Neuron, 2023 DOI: 10.1016/j.neuron.2023.02.027
  224. “What Does Gamma Coherence Tell Us about Inter-Regional Neural Communication?” In Nature neuroscience 18, 2015, pp. 484–9 DOI: 10.1038/nn.3952
  225. “Parallel and Functionally Segregated Processing of Task Phase and Conscious Content in the Prefrontal Cortex” In Commun. Biol. 1.1 Nature Publishing Group, 2018, pp. 1–12 DOI: 10.1038/s42003-018-0225-1
  226. Kohitij Kar and James J. DiCarlo “Fast Recurrent Processing via Ventral Prefrontal Cortex Is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition” In bioRxiv Cold Spring Harbor Laboratory, 2020, pp. 2020.05.10.086959 DOI: 10.1101/2020.05.10.086959
  227. “Beyond Authorship: Attribution, Contribution, Collaboration, and Credit” In Learn. Publ. 28.2, 2015, pp. 151–155 DOI: 10.1087/20150211
  228. Shervin Safavi, Nikos K. Logothetis and Michel Besserve “From Univariate to Multivariate Coupling between Continuous Signals and Point Processes: A Mathematical Framework” In Neural Computation, 2021, pp. 1–67 DOI: 10.1162/neco˙a˙01389
  229. S. Safavi, N.K. Logothetis and M. Besserve “Multivariate Coupling Estimation between Continuous Signals and Point Processes” In NeurIPS 2019 Workshop: Learning with Temporal Point Processes, 2019 URL: https://slideslive.com/38922893/multivariate-coupling-estimation-between-continuous-signals-and-point-processes?locale=cs
  230. “Generalized Phase Locking Analysis: A Multivariate Technique for Investigating Spike-Field Coupling” In Bernstein Conference G-Node, 2021 DOI: 10.12751/NNCN.BC2021.P109
  231. Don H. Johnson “Point Process Models of Single-Neuron Discharges” In J Comput Neurosci 3.4, 1996, pp. 275–299 DOI: 10.1007/BF00161089
  232. “Recurrent Coevolutionary Latent Feature Processes for Continuous-Time Recommendation” In Proc. 1st Workshop Deep Learn. Recomm. Syst., DLRS 2016 New York, NY, USA: Association for Computing Machinery, 2016, pp. 29–34 DOI: 10.1145/2988450.2988451
  233. “Learning and Forecasting Opinion Dynamics in Social Networks” In Proc. 30th Int. Conf. Neural Inf. Process. Syst., NIPS’16 Red Hook, NY, USA: Curran Associates Inc., 2016, pp. 397–405
  234. “Uncovering the Organization of Neural Circuits with Generalized Phase Locking Analysis” In bioRxiv Cold Spring Harbor Laboratory, 2020, pp. 2020.12.09.413401 DOI: 10.1101/2020.12.09.413401
  235. “Generalized Phase Locking Analysis of Electrophysiology Data” In ESI Systems Neuroscience Conference (ESI-SyNC 2017): Principles of Structural and Functional Connectivity, 2017 URL: http://www.esi-frankfurt.de/programme/
  236. “Generalized Phase Locking Analysis of Electrophysiology Data” In AREADNE 2018: Research in Encoding And Decoding of Neural Ensembles AREADNE Foundation, 2018, pp. 88 URL: http://hdl.handle.net/21.11116/0000-0007-9867-A
  237. “Generalized Phase Locking Analysis of Electrophysiology Data” In Computational and Systems Neuroscience Meeting (COSYNE 2019), 2019, pp. 184–185 URL: http://hdl.handle.net/21.11116/0000-0003-2059-5
  238. “Uncovering the Organization of Neural Circuits with Generalized Phase-Locking Analysis” In Computational and Systems Neuroscience Meeting (COSYNE 2020), 2020, pp. 150–151 URL: http://hdl.handle.net/21.11116/0000-0009-2A63-9
  239. Odd O. Aalen, rnulf Borgan and H kon K. Gjessing “Survival and Event History Analysis: A Process Point of View”, Statistics for Biology and Health New York, NY: Springer, 2008
  240. Shervin Safavi, Nikos K. Logothetis and Michel Besserve “From Univariate to Multivariate Coupling between Continuous Signals and Point Processes: A Mathematical Framework” In ArXiv200504034 Q-Bio Stat, 2020 arXiv: http://arxiv.org/abs/2005.04034
  241. “Practical on Machine Learning for Neuroscience” In Machine Learning Summer School (MLSS 2016), 2016 URL: http://hdl.handle.net/21.11116/0000-0007-8E7B-0
  242. “Spatiotemporal Patterns of Neocortical Activity around Hippocampal Sharp-Wave Ripples” In eLife 9 eLife Sciences Publications, Ltd, 2020, pp. e51972 DOI: 10.7554/eLife.51972
  243. Walter J. Freeman and Michael Breakspear “Scale-Free Neocortical Dynamics” In Scholarpedia 2.2, 2007, pp. 1357 DOI: 10.4249/scholarpedia.1357
  244. B.J. He “Scale-Free Brain Activity: Past, Present, and Future” In Trends in cognitive sciences 18, 2014, pp. 480–7 DOI: 10.1016/j.tics.2014.04.003
  245. C. F votte, N. Bertin and J. Durrieu “Nonnegative Matrix Factorization with the Itakura-Saito Divergence: With Application to Music Analysis” In Neural Comput. 21.3, 2009, pp. 793–830 DOI: 10.1162/neco.2008.04-08-771
  246. “Shift-Invariant Dictionary Learning for Sparse Representations: Extending K-SVD” In 2008 16th Eur. Signal Process. Conf., 2008, pp. 1–5
  247. “From Optimal Efficient Coding to Criticality” In Conference on Complex Systems (CCS 2018) Satellite: Complexity from Cells to Consciousness: Free Energy, Integrated Information, and Epsilon Machines, 2018 URL: http://hdl.handle.net/21.11116/0000-0002-B7C0-6
  248. “Signatures of Criticality in Efficient Coding Networks” In DPG-Fr hjahrstagung 2019, 2019 URL: http://hdl.handle.net/21.11116/0000-0003-9654-5
  249. “Signatures of Criticality Observed in Efficient Coding Networks” In Computational and Systems Neuroscience Meeting (COSYNE 2020), 2020, pp. 109 URL: http://hdl.handle.net/21.11116/0000-0005-EC1B-4
  250. C.W. Eurich “Neural Dynamics and Neural Coding Two Complementary Approaches”, 2003 URL: http://www.neuro.uni-bremen.de/~eurich/Publications/Eurich_habil_part_I.pdf
  251. “Matching Storage and Recall: Hippocampal Spike Timing–Dependent Plasticity and Phase Response Curves” In Nat. Neurosci. 8.12 Nature Publishing Group, 2005, pp. 1677–1683 DOI: 10.1038/nn1561
  252. S. Deneve “Bayesian Spiking Neurons I: Inference” In Neural computation 20, 2008, pp. 91–117 DOI: 10.1162/neco.2008.20.1.91
  253. S. Deneve “Bayesian Spiking Neurons II: Learning” In Neural computation 20, 2008, pp. 118–45 DOI: 10.1162/neco.2008.20.1.118
  254. “Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons” In PLoS computational biology 7, 2011, pp. e1002211 DOI: 10.1371/journal.pcbi.1002211
  255. “Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition” In PLOS ONE 10.8, 2015, pp. e0134356 DOI: 10.1371/journal.pone.0134356
  256. Fleur Zeldenrust, Boris Gutkin and Sophie Den ve “Efficient and Robust Coding in Heterogeneous Recurrent Networks” In bioRxiv, 2019, pp. 804864 DOI: 10.1101/804864
  257. “Cortical-like Dynamics in Recurrent Circuits Optimized for Sampling-Based Probabilistic Inference” In Nat. Neurosci. 23.9 Nature Publishing Group, 2020, pp. 1138–1149 DOI: 10.1038/s41593-020-0671-1
  258. Chris Eliasmith “A Unified Approach to Building and Controlling Spiking Attractor Networks” In Neural Computation 17.6, 2005, pp. 1276–1314 DOI: 10.1162/0899766053630332
  259. D. Sussillo “Neural Circuits as Computational Dynamical Systems” In Curr Opin Neurobiol 25, 2014, pp. 156–63 DOI: 10.1016/j.conb.2014.01.008
  260. “Optimal Information Representation and Criticality in an Adaptive Sensory Recurrent Neuronal Network” In PLOS Computational Biology 12.2, 2016, pp. e1004698 DOI: 10.1371/journal.pcbi.1004698
  261. W. Maass “Searching for Principles of Brain Computation” In Curr. Opin. Behav. Sci. 11, 2016, pp. 81–92 DOI: 10.1016/j.cobeha.2016.06.003
  262. Christopher M Kim and Carson C Chow “Learning Recurrent Dynamics in Spiking Networks” In eLife 7, 2018, pp. e37124 DOI: 10.7554/eLife.37124
  263. “Computing by Modulating Spontaneous Cortical Activity Patterns as a Mechanism of Active Visual Processing” In Nat Commun 10.1, 2019, pp. 1–15 DOI: 10.1038/s41467-019-12918-8
  264. G.Bard Ermentrout, Roberto F. Gal n and Nathaniel N. Urban “Relating Neural Dynamics to Neural Coding” In Phys. Rev. Lett. 99.24 American Physical Society, 2007, pp. 248103 DOI: 10.1103/PhysRevLett.99.248103
  265. “Alpha Oscillations and Traveling Waves: Signatures of Predictive Coding?” In PLOS Biology 17.10, 2019, pp. e3000487 DOI: 10.1371/journal.pbio.3000487
  266. Jonathan Kadmon, Jonathan Timcheck and Surya Ganguli “Predictive Coding in Balanced Neural Networks with Noise, Chaos and Delays” In ArXiv200614178 Cond-Mat Q-Bio Stat, 2020 arXiv: http://arxiv.org/abs/2006.14178
  267. Kai Roeth, Shuai Shao and Julijana Gjorgjieva “Efficient Population Coding Depends on Stimulus Convergence and Source of Noise” In bioRxiv Cold Spring Harbor Laboratory, 2020, pp. 2020.06.15.151795 DOI: 10.1101/2020.06.15.151795
  268. Nikos Logothetis “Studies of Large-Scale Networks with DES- & NET-fMRI”, 2014
  269. “Distilling the Neural Correlates of Consciousness” In Neuroscience & Biobehavioral Reviews 36.2, 2012, pp. 737–746 DOI: 10.1016/j.neubiorev.2011.12.003
  270. Tom A. de Graaf, Po-Jang Hsieh and Alexander T. Sack “The ’correlates’ in Neural Correlates of Consciousness” In Neurosci Biobehav Rev 36.1, 2012, pp. 191–197 DOI: 10.1016/j.neubiorev.2011.05.012
  271. “No-Report Paradigms: Extracting the True Neural Correlates of Consciousness” In Trends in Cognitive Sciences 19.12, 2015, pp. 757–770 DOI: 10.1016/j.tics.2015.10.002
  272. “Introspection, Attention or Awareness? The Role of the Frontal Lobe in Binocular Rivalry” In Frontiers in human neuroscience 8, 2014, pp. 527 DOI: 10.3389/fnhum.2014.00527
  273. “Activity Changes in Early Visual Cortex Reflect Monkeys’ Percepts during Binocular Rivalry” In Nature 379.6565, 1996, pp. 549–53 DOI: 10.1038/379549a0
  274. “Divergence of fMRI and Neural Signals in V1 during Perceptual Suppression in the Awake Monkey” In Nature neuroscience 11.10, 2008, pp. 1193–200 DOI: 10.1038/nn.2173
  275. G.A. Keliris, N.K. Logothetis and A.S. Tolias “The Role of the Primary Visual Cortex in Perceptual Suppression of Salient Visual Stimuli” In The Journal of neuroscience : the official journal of the Society for Neuroscience 30.37, 2010, pp. 12353–65 DOI: 10.1523/JNEUROSCI.0677-10.2010
  276. David A. Leopold “Primary Visual Cortex: Awareness and Blindsight” In Annu. Rev. Neurosci. 35.1, 2012, pp. 91–109 DOI: 10.1146/annurev-neuro-062111-150356
  277. “Temporal Regimes of State-Dependent Correlated Variability in the Macaque Ventrolateral Prefrontal Cortex”, 2015, pp. 18 URL: https://sites.google.com/site/nenaconference/home
  278. “A Non-Monotonic Correlation Structure in the Macaque Ventrolateral Prefrontal Cortex” In AREADNE The AREADNE Foundation, 2016, pp. 53 URL: http://areadne.org/2016/pezaris-hatsopoulos-2016-areadne.pdf
  279. Rodney J. Douglas, Kevan A.C. Martin and David Whitteridge “A Canonical Microcircuit for Neocortex” In Neural Comput. 1.4 MIT Press, 1989, pp. 480–488 DOI: 10.1162/neco.1989.1.4.480
  280. Rodney J. Douglas and Kevan A.C. Martin “Neuronal Circuits of the Neocortex” In Annu. Rev. Neurosci. 27.1 Annual Reviews, 2004, pp. 419–451 DOI: 10.1146/annurev.neuro.27.070203.144152
  281. Rodney J. Douglas and Kevan A.C. Martin “Mapping the Matrix: The Ways of Neocortex” In Neuron 56.2, 2007, pp. 226–238 DOI: 10.1016/j.neuron.2007.10.017
  282. “Cortical Connectivity and Sensory Coding” In Nature 503.7474, 2013, pp. 51–8 DOI: 10.1038/nature12654
  283. “Correlated Discharges among Putative Pyramidal Neurons and Interneurons in the Primate Prefrontal Cortex” In Journal of neurophysiology 88.6, 2002, pp. 3487–3497 DOI: DOI 10.1152/jn.00188.2002
  284. “Circuits for Local and Global Signal Integration in Primary Visual Cortex” In J. Neurosci. 22.19 Society for Neuroscience, 2002, pp. 8633–8646 DOI: 10.1523/JNEUROSCI.22-19-08633.2002
  285. “A Modeler’s View on the Spatial Structure of Intrinsic Horizontal Connectivity in the Neocortex” In Progress in Neurobiology 92.3, 2010, pp. 277–292 DOI: 10.1016/j.pneurobio.2010.05.001
  286. W. Bair, E. Zohary and W.T. Newsome “Correlated Firing in Macaque Visual Area MT: Time Scales and Relationship to Behavior” In The Journal of neuroscience : the official journal of the Society for Neuroscience 21.5, 2001, pp. 1676–97
  287. “Perceptual Modulation of Pupillary Reflex in Macaque Monkeys” In Federation of European Neuroscience Society Featured Regional Meeting (FFRM 2015), 2015 URL: http://ffrm2015.com/
  288. “Modulation of Neural Discharges and Local Field Potentials in the Macaque Prefrontal Cortex during Binocular Rivalry” In 48th Annual Meeting of the Society for Neuroscience (Neuroscience 2018), 2018 URL: https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3005634
  289. “Spiking Activity in the Prefrontal Cortex Reflects Spontaneous Perceptual Transitions during a No Report Binocular Rivalry Paradigm” In 11th FENS Forum of Neuroscience, 2018 URL: http://hdl.handle.net/21.11116/0000-0006-CABF-0
  290. “Neuronal Discharges in the Prefrontal Cortex Reflect Changes in Conscious Perception during a No Report Binocular Rivalry Paradigm” In Association for the Scientific Study of Consciousness 23, 2019 URL: http://hdl.handle.net/21.11116/0000-0004-A9B4-2
  291. “Consciousness and Neuroscience” In Cerebral cortex 8.2, 1998, pp. 97–107
  292. “Empirical Support for Higher-Order Theories of Conscious Awareness” In Trends in cognitive sciences 15, 2011, pp. 365–73 DOI: 10.1016/j.tics.2011.05.009
  293. Bernard J. Baars “Global Workspace Theory of Consciousness: Toward a Cognitive Neuroscience of Human Experience” In Prog Brain Res 150, 2005, pp. 45–53 DOI: 10.1016/S0079-6123(05)50004-9
  294. “Experimental and Theoretical Approaches to Conscious Processing” In Neuron 70.2, 2011, pp. 200–27 DOI: 10.1016/j.neuron.2011.03.018
  295. W.J.M. Levelt “Note on the Distribution of Dominance Times in Binocular Rivalry” In Br. J. Psychol. 58.1-2, 1967, pp. 143–145 DOI: 10.1111/j.2044-8295.1967.tb01068.x
  296. E.M. Meyers “The Neural Decoding Toolbox” In Frontiers in neuroinformatics 7, 2013, pp. 8 DOI: 10.3389/fninf.2013.00008
  297. “Perisynaptic Activity in the Prefrontal Cortex Reflects Spontaneous Transitions in Conscious Visual Perception” In AREADNE 2018: Research in Encoding And Decoding of Neural Ensembles AREADNE Foundation, 2018, pp. 58 URL: http://hdl.handle.net/21.11116/0000-0001-944E-1
  298. G. Buzsaki, N. Logothetis and W. Singer “Scaling Brain Size, Keeping Timing: Evolutionary Preservation of Brain Rhythms” In Neuron 80.3, 2013, pp. 751–64 DOI: 10.1016/j.neuron.2013.10.002
  299. S.G. Mallat “A Wavelet Tour of Signal Processing” San Diego: Academic Press, 1999
  300. “Chronux: A Platform for Analyzing Neural Signals” In Journal of neuroscience methods 192.1, 2010, pp. 146–51 DOI: 10.1016/j.jneumeth.2010.06.020
  301. John H. Holland “Studying Complex Adaptive Systems” In Jrl Syst Sci & Complex 19.1, 2006, pp. 1–8 DOI: 10.1007/s11424-006-0001-z
  302. Edward S. Reed “Encountering the World: Toward an Ecological Psychology” New York: Oxford University Press, 1996
  303. Yael Niv “Reinforcement Learning in the Brain” In Journal of Mathematical Psychology 53.3, Special Issue: Dynamic Decision Making, 2009, pp. 139–154 DOI: 10.1016/j.jmp.2008.12.005
  304. Dominik R. Bach and Peter Dayan “Algorithms for Survival: A Comparative Perspective on Emotions” In Nat Rev Neurosci 18.5, 2017, pp. 311–319 DOI: 10.1038/nrn.2017.35
  305. Yael Niv “The Primacy of Behavioral Research for Understanding the Brain”, 2020 DOI: 10.31234/osf.io/y8mxe
  306. “Multiscale Analysis and Nonlinear Dynamics: From Genes to the Brain”, Reviews of Nonlinear Dynamics and Complexity Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013
  307. “Multiscale Modeling of Brain Dynamics: From Single Neurons and Networks to Mathematical Tools” In Wiley Interdiscip Rev Syst Biol Med 8.5, 2016, pp. 438–458 DOI: 10.1002/wsbm.1348
  308. “From Understanding Computation to Understanding Neural Circuitry” In Neurosci. Res. Program Bull. 15.3, 1979, pp. 470–488 URL: https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3236532
  309. “Translational Perspectives for Computational Neuroimaging” In Neuron 87.4, 2015, pp. 716–732 DOI: 10.1016/j.neuron.2015.07.008
  310. “An Introduction to Model-Based Cognitive Neuroscience” New York: Springer, 2015
  311. Harold J. Morowitz and Jerome L. Singer “The Mind, The Brain And Complex Adaptive Systems” Reading, Mass: Westview Press, 1995
  312. Debashish Chowdhury “Immune Network: An Example of Complex Adaptive Systems” In Artificial Immune Systems and Their Applications Berlin, Heidelberg: Springer, 1999, pp. 89–104 DOI: 10.1007/978-3-642-59901-9˙5
  313. Nick C. Ellis and Diane Larsen-Freeman “Language as a Complex Adaptive System” John Wiley & Sons, 2009
  314. Jason Brownlee “Complex Adaptive Systems”, 2007
  315. Murray Gell-Mann “Complex Adaptive Systems” In Complexity: Metaphors, Models, and Reality Reading, MA: Addison-Wesley, 1994, pp. 17–45 URL: https://resolver.caltech.edu/CaltechAUTHORS:20150924-144445402
  316. “The Economy as an Evolving Complex System II” Addison-Wesley, 1997
  317. John H. Holland “Signals and Boundaries: Building Blocks for Complex Adaptive Systems” The MIT Press, 2012
  318. “Reinforcement Learning” In Scholarpedia 3.3, 2008, pp. 1448 DOI: 10.4249/scholarpedia.1448
  319. “Linking Connectivity, Dynamics, and Computations in Low-Rank Recurrent Neural Networks” In Neuron 99.3, 2018, pp. 609–623.e29 DOI: 10.1016/j.neuron.2018.07.003
  320. “Complementary Roles of Dimensionality and Population Structure in Neural Computations” In bioRxiv Cold Spring Harbor Laboratory, 2020, pp. 2020.07.03.185942 DOI: 10.1101/2020.07.03.185942
  321. Erik J. Peterson and Bradley Voytek “Healthy Oscillatory Coordination Is Bounded by Single-Unit Computation.” In bioRxiv, 2018, pp. 309427 DOI: 10.1101/309427
  322. Xue-Xin Wei and Alan A. Stocker “Mutual Information, Fisher Information, and Efficient Coding” In Neural Computation 28.2, 2015, pp. 305–326 DOI: 10.1162/NECO˙a˙00804
  323. “Relating Fisher Information to Order Parameters” In Phys. Rev. E 84.4, 2011, pp. 041116 DOI: 10.1103/PhysRevE.84.041116
  324. “Quantifying Collectivity” In Curr Opin Neurobiol 37, 2016, pp. 106–113 DOI: 10.1016/j.conb.2016.01.012
  325. Alexander C. Kalloniatis, Mathew L. Zuparic and Mikhail Prokopenko “Fisher Information and Criticality in the Kuramoto Model of Nonidentical Oscillators” In Phys. Rev. E 98.2 American Physical Society, 2018, pp. 022302 DOI: 10.1103/PhysRevE.98.022302
  326. “Optimal Fisher Decoding of Neural Activity Near Criticality” In The Functional Role of Critical Dynamics in Neural Systems, Springer Series on Bio- and Neurosystems Cham: Springer International Publishing, 2019, pp. 159–177 DOI: 10.1007/978-3-030-20965-0˙9
  327. “The Organizing Principles of Neuronal Avalanches: Cell Assemblies in the Cortex?” In Trends in neurosciences 30, 2007, pp. 101–10 DOI: 10.1016/j.tins.2007.01.005
  328. “Formation of Cortical Cell Assemblies” In Cold Spring Harb Sym 55, 1990, pp. 939–52
  329. “Organization of Cell Assemblies in the Hippocampus” In Nature 424, 2003, pp. 552–6 DOI: 10.1038/nature01834
  330. K.D. Harris “Neural Signatures of Cell Assembly Organization” In Nat Rev Neurosci 6.5, 2005, pp. 399–407 DOI: 10.1038/nrn1669
  331. G. Buzsaki “Neural Syntax: Cell Assemblies, Synapsembles, and Readers” In Neuron 68.3, 2010, pp. 362–85 DOI: 10.1016/j.neuron.2010.09.023
  332. “The Use of Hebbian Cell Assemblies for Nonlinear Computation” In Sci. Rep. 5.1 Nature Publishing Group, 2015, pp. 12866 DOI: 10.1038/srep12866
  333. “A Circuit Mechanism for Irrationalities in Decision-Making and NMDA Receptor Hypofunction: Behaviour, Computational Modelling, and Pharmacology” In bioRxiv Cold Spring Harbor Laboratory, 2019, pp. 826214 DOI: 10.1101/826214
  334. Michael J. Frank “Linking Across Levels of Computation in Model-Based Cognitive Neuroscience” In An Introduction to Model-Based Cognitive Neuroscience New York, NY: Springer, 2015, pp. 159–177 DOI: 10.1007/978-1-4939-2236-9˙8
  335. R. Moreno-Bote, J. Rinzel and N. Rubin “Noise-Induced Alternations in an Attractor Network Model of Perceptual Bistability” In Journal of neurophysiology 98.3, 2007, pp. 1125–39 DOI: 10.1152/jn.00116.2007
  336. “Balance between Noise and Adaptation in Competition Models of Perceptual Bistability” In Journal of computational neuroscience 27.1, 2009, pp. 37–54 DOI: 10.1007/s10827-008-0125-3
  337. “Canonical Cortical Circuit Model Explains Rivalry, Intermittent Rivalry, and Rivalry Memory” In PLOS Computational Biology 12.5, 2016, pp. e1004903 DOI: 10.1371/journal.pcbi.1004903
  338. Benjamin P. Cohen, Carson C. Chow and Shashaank Vattikuti “Dynamical Modeling of Multi-Scale Variability in Neuronal Competition” In Commun Biol 2.1, 2019, pp. 1–11 DOI: 10.1038/s42003-019-0555-7
  339. Peter Dayan “A Hierarchical Model of Binocular Rivalry” In Neural Comput. 10.5, 1998, pp. 1119–1135 DOI: 10.1162/089976698300017377
  340. J. Hohwy, A. Roepstorff and K. Friston “Predictive Coding Explains Binocular Rivalry: An Epistemological Review” In Cognition 108.3, 2008, pp. 687–701 DOI: 10.1016/j.cognition.2008.05.010
  341. G.S. Atwal “Statistical Mechanics of Multistable Perception” In BioRxiv, 2014 DOI: 10.1101/008177
  342. Samuel Gershman, Ed Vul and Joshua B. Tenenbaum “Perceptual Multistability as Markov Chain Monte Carlo Inference” In Advances in Neural Information Processing Systems, 2014, pp. 611–619
  343. “The Bayesian Brain: The Role of Uncertainty in Neural Coding and Computation” In Trends in neurosciences 27, 2004, pp. 712–9 DOI: 10.1016/j.tins.2004.10.007
  344. “Bayesian Brain: Probabilistic Approaches to Neural Coding” MIT Press, 2007
  345. P.C. Klink, R.J.A. van Wezel and R. van Ee “United We Sense, Divided We Fail: Context-Driven Perception of Ambiguous Visual Stimuli” In Philos Trans R Soc Lond B Biol Sci 367.1591, 2012, pp. 932–941 DOI: 10.1098/rstb.2011.0358
  346. “Psilocybin Slows Binocular Rivalry Switching through Serotonin Modulation.”, pp. 1
  347. “GABAergic Inhibition Gates Perceptual Awareness During Binocular Rivalry” In J. Neurosci. 39.42 Society for Neuroscience, 2019, pp. 8398–8407 DOI: 10.1523/JNEUROSCI.0836-19.2019
  348. “Genetic Contribution to Individual Variation in Binocular Rivalry Rate” In Proceedings of the National Academy of Sciences 107.6, 2010, pp. 2664–2668 DOI: 10.1073/pnas.0912149107
  349. “Psychiatric and Genetic Studies of Binocular Rivalry: An Endophenotype for Bipolar Disorder?” In Acta Neuropsychiatr. 23.1 Cambridge University Press, 2011, pp. 37–42 DOI: 10.1111/j.1601-5215.2010.00510.x
  350. Phillip C.F. Law, Steven M. Miller and Trung T. Ngo “The Effect of Stimulus Strength on Binocular Rivalry Rate in Healthy Individuals: Implications for Genetic, Clinical and Individual Differences Studies” In Physiology & Behavior 181, 2017, pp. 127–136 DOI: 10.1016/j.physbeh.2017.08.023
  351. “Genomic Analyses of Visual Cognition: Perceptual Rivalry and Top-Down Control” In J. Neurosci. 38.45, 2018, pp. 9668–9678 DOI: 10.1523/JNEUROSCI.1970-17.2018
  352. “Burst Firing Synchronizes Prefrontal and Anterior Cingulate Cortex during Attentional Control” In Current biology : CB 24, 2014, pp. 2613–21 DOI: 10.1016/j.cub.2014.09.046
  353. Pantelis Leptourgos “Dynamical Circular Inference in the General Population and the Psychosis Spectrum : Insights from Perceptual Decision Making”, 2018 URL: https://tel.archives-ouvertes.fr/tel-02132179
  354. “Analysis of Multimodal Neuroimaging Data” In IEEE Rev Biomed Eng 4, 2011, pp. 26–58 DOI: 10.1109/RBME.2011.2170675
  355. “Learning From More Than One Data Source: Data Fusion Techniques for Sensorimotor Rhythm-Based Brain-Computer Interfaces” In P Ieee 103, 2015, pp. 891–906 DOI: 10.1109/Jproc.2015.2413993
  356. “Topological Portraits of Multiscale Coordination Dynamics” In Journal of Neuroscience Methods 339, 2020, pp. 108672 DOI: 10.1016/j.jneumeth.2020.108672
  357. “Spikernels: Predicting Arm Movements by Embedding Population Spike Rate Patterns in Inner-Product Spaces” In Neural computation 17.3, 2005, pp. 671–90 DOI: 10.1162/0899766053019944
  358. A.R. Paiva, I. Park and J.C. Principe “A Reproducing Kernel Hilbert Space Framework for Spike Train Signal Processing” In Neural computation 21.2, 2009, pp. 424–49 DOI: 10.1162/neco.2008.09-07-614
  359. A.R.C. Paiva, I. Park and J.C. Principe “Inner Products for Representation and Learning in the Spike Train Domain” In Stat. Signal Process. Neurosci. Neurotechnology, 2010, pp. 265–309 DOI: 10.1016/B978-0-12-375027-3.00008-9
  360. “A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control” In Computational intelligence and neuroscience 2014, 2014, pp. 870160 DOI: 10.1155/2014/870160
  361. “Kernel Methods on Spike Train Space for Neuroscience: A Tutorial” In arXiv, 2013
  362. “Advances in the Computational Understanding of Mental Illness” In Neuropsychopharmacology Nature Publishing Group, 2020, pp. 1–17 DOI: 10.1038/s41386-020-0746-4
  363. Margit Burmeister, Melvin G. McInnis and Sebastian Zöllner “Psychiatric Genetics: Progress amid Controversy” In Nat. Rev. Genet. 9.7 Nature Publishing Group, 2008, pp. 527–540 DOI: 10.1038/nrg2381
  364. “Determining the Role of microRNAs in Psychiatric Disorders” In Nat. Rev. Neurosci. 16.4 Nature Publishing Group, 2015, pp. 201–212 DOI: 10.1038/nrn3879
  365. “The Polygenic Architecture of Schizophrenia — Rethinking Pathogenesis and Nosology” In Nat. Rev. Neurol. Nature Publishing Group, 2020, pp. 1–14 DOI: 10.1038/s41582-020-0364-0
  366. Leonhard Schilbach “Towards a Second-Person Neuropsychiatry” In Philos Trans R Soc Lond B Biol Sci 371.1686, 2016 DOI: 10.1098/rstb.2015.0081
  367. “The Promise of Two-Person Neuroscience for Developmental Psychiatry: Using Interaction-Based Sociometrics to Identify Disorders of Social Interaction” In Br. J. Psychiatry 215.5 Cambridge University Press, 2019, pp. 636–638 DOI: 10.1192/bjp.2019.73
  368. “Social Bayes: Using Bayesian Modeling to Study Autistic Trait–Related Differences in Social Cognition” In Biological Psychiatry 87.2, Molecular Mechanisms of Neurodevelopmental Disorders, 2020, pp. 185–193 DOI: 10.1016/j.biopsych.2019.09.032
  369. “Computational Psychiatry: New Perspectives on Mental Illness”, Str ngmann Forum Reports Cambridge, Massachusetts: The MIT Press, 2016 URL: https://esforum.de/publications/sfr20/Computational%20Psychiatry.html
  370. “Inflammation and Immunity in Schizophrenia: Implications for Pathophysiology and Treatment” In The Lancet Psychiatry 2.3, 2015, pp. 258–270 DOI: 10.1016/S2215-0366(14)00122-9
  371. Edward Bullmore “The Inflamed Mind: A Radical New Approach to Depression”, 2018
  372. Antonio L. Teixeira and Moises E. Bauer “Immunopsychiatry: A Clinician’s Introduction to the Immune Basis of Mental Disorders” Oxford University Press, 2019
  373. “Inflammation-Related Biomarkers in Major Psychiatric Disorders: A Cross-Disorder Assessment of Reproducibility and Specificity in 43 Meta-Analyses” In Transl Psychiatry 9.1, 2019, pp. 1–13 DOI: 10.1038/s41398-019-0570-y
  374. Andreas Mayer “Optimal Immune Systems : A Ressource Allocation and Information Processing View of Immune Defense”, 2017 URL: https://tel.archives-ouvertes.fr/tel-01707653
  375. Maya Schiller, Tamar L. Ben-Shaanan and Asya Rolls “Neuronal Regulation of Immunity: Why, How and Where?” In Nat. Rev. Immunol. Nature Publishing Group, 2020, pp. 1–17 DOI: 10.1038/s41577-020-0387-1
  376. Faraj Haddad, Salonee Patel and Susanne Schmid “Maternal Immune Activation by Poly I:C as a Preclinical Model for Neurodevelopmental Disorders: A Focus on Autism and Schizophrenia” In Neuroscience & Biobehavioral Reviews, 2020 DOI: 10.1016/j.neubiorev.2020.04.012
  377. Golam M Khandaker, Urs Meyer and Peter B Jones “Neuroinflammation and Schizophrenia”, 2020
  378. “Psychoneuroimmunology and Immunopsychiatry of Zebrafish” In Psychoneuroendocrinology 92, 2018, pp. 1–12 DOI: 10.1016/j.psyneuen.2018.03.014
  379. “Negative Feedback Control of Neuronal Activity by Microglia” In Nature Nature Publishing Group, 2020, pp. 1–7 DOI: 10.1038/s41586-020-2777-8
  380. “Brain’s Immune Cells Put the Brakes on Neurons” In Nature Nature Publishing Group, 2020 DOI: 10.1038/d41586-020-02713-7
  381. Grant S. Shields, Chandler M. Spahr and George M. Slavich “Psychosocial Interventions and Immune System Function: A Systematic Review and Meta-analysis of Randomized Clinical Trials” In JAMA Psychiatry 77.10 American Medical Association, 2020, pp. 1031–1043 DOI: 10.1001/jamapsychiatry.2020.0431
  382. “Social Isolation Alters Behavior, the Gut-Immune-Brain Axis, and Neurochemical Circuits in Male and Female Prairie Voles” In Neurobiology of Stress, 2020, pp. 100278 DOI: 10.1016/j.ynstr.2020.100278
  383. “Transdiagnostic Hippocampal Damage Patterns in Neuroimmunological Disorders” In NeuroImage: Clinical 28, 2020, pp. 102515 DOI: 10.1016/j.nicl.2020.102515
  384. “Remembering Immunity: Neuronal Ensembles in the Insular Cortex Encode and Retrieve Specific Immune Responses” In bioRxiv Cold Spring Harbor Laboratory, 2020, pp. 2020.12.03.409813 DOI: 10.1101/2020.12.03.409813
  385. “The Memory Orchestra: The Role of Astrocytes and Oligodendrocytes in Parallel to Neurons” In Current Opinion in Neurobiology 67, 2021, pp. 131–137 DOI: 10.1016/j.conb.2020.10.022
  386. “Circular Inference: Mistaken Belief, Misplaced Trust” In Current Opinion in Behavioral Sciences 11, Computational Modeling, 2016, pp. 40–48 DOI: 10.1016/j.cobeha.2016.04.001
  387. “Signatures of Criticality in Efficient Coding Networks” bioRxiv, 2023, pp. 2023.02.14.528465 DOI: 10.1101/2023.02.14.528465
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

  • The paper introduces novel multiscale neural data analysis techniques to dissect the brain's intricate dynamics.
  • The paper demonstrates how the criticality hypothesis explains neural activity near the edge of chaos, enhancing our understanding of brain computation.
  • The paper links complex systems theory with cognition by exploring bistable perception to bridge cellular mechanisms with emergent behavior.

Brain as a Complex System: Integrating Neuroscience Tools

The document "Brain as a Complex System" by Shervin Safavi, submitted as a PhD thesis, navigates the intricate landscape of neuroscience from the viewpoint of systems theory, positing the brain as a quintessential example of a complex system. The work leverages tools and frameworks from systems neuroscience to provide insights into the brain's functionality at multiple scales, and in doing so, draws heavily on concepts from complex systems science.

Overview

The thesis is structured around three central domains: methods for neural data analysis, neural theories, and cognition. Each of these informs the overarching conceptual framework that perceives the brain as an intricate network of processes displaying emergent properties and distributed functionality characteristic of complex systems.

Methods for Neural Data Analysis

In the first domain, the thesis introduces novel statistical methodologies for analyzing neural data across multiple scales. It suggests that a comprehensive understanding of the brain's complexity necessitates such an integrative approach. The proposed methods aim to dissect the neural dynamics by examining data from the cellular level to whole-brain activities, suggesting that understanding the brain's functionality requires looking beyond isolated scales and more towards interactions across these scales.

Neural Theories

The second domain discusses neural theories, particularly the criticality hypothesis, which posits that the brain operates near a critical point between order and chaos, benefiting computational processes. The thesis explores how approaching neural systems through this lens provides a complementary perspective to traditional reductionist views. This framework fundamentally suggests that the brain's dynamic complexity may be explained through principles similar to those governing other complex systems and invites further exploration of how such critical states optimize informational and computational capabilities in neural networks.

Cognition and Behavior

The third focus of the thesis is on cognition, with a particular emphasis on phenomena such as bistable perception, which are explored through complex systems theory. The investigation into perceptual processes like binocular rivalry is framed as a way to understand cognitive functions as emergent properties of complex neural interactions. The work argues for a cross-scale examination of these phenomena, proposing that understanding the neural bases of cognition will bridge the gap between large-scale observations and detailed cellular mechanisms.

Implications and Future Directions

The implications of this research are multifaceted. Practically, the introduced methodologies can enhance our capacity to interpret multiscale neural data, potentially influencing fields like neuroengineering and computational neuroscience. Theoretically, it invites reconceptualization of neural processes in terms of criticality and complexity theory, which could offer new insights into general principles of brain function and dysfunction.

The thesis speculates that future developments in AI and computational neuroscience might increasingly draw from these findings, especially as they pertain to emulating or understanding the brain's emergent properties and adaptability. This orientation towards understanding brain function through the complex systems lens may also inform the development of artificial systems that mimic these natural computations.

Conclusion

Overall, the thesis "Brain as a Complex System" makes significant contributions to neuroscience by integrating systems neuroscience tools with complex systems theory, offering a robust framework for exploring the brain's dynamics. By widening the conceptual lens to include both the microscopic intricacies and macroscopic phenomena, it sets the stage for future research to unfold within this interdisciplinary paradigm, ultimately aiming to unravel the brain's complexities in a more holistic and integrated manner.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube