Brain as a complex system, harnessing systems neuroscience tools & notions for an empirical approach (2312.13478v1)
Abstract: Finding general principles underlying brain function has been appealing to scientists. Indeed, in some branches of science like physics and chemistry (and to some degree biology) a general theory often can capture the essence of a wide range of phenomena. Whether we can find such principles in neuroscience, and [assuming they do exist] what those principles are, are important questions. Abstracting the brain as a complex system is one of the perspectives that may help us answer this question. While it is commonly accepted that the brain is a (or even the) prominent example of a complex system, the far reaching implications of this are still arguably overlooked in our approaches to neuroscientific questions. One of the reasons for the lack of attention could be the apparent difference in foci of investigations in these two fields -- neuroscience and complex systems. This thesis is an effort toward providing a bridge between systems neuroscience and complex systems by harnessing systems neuroscience tools & notions for building empirical approaches toward the brain as a complex system. Perhaps, in the spirit of searching for principles, we should abstract and approach the brain as a complex adaptive system as the more complete perspective (rather than just a complex system). In the end, the brain, even the most "complex system", need to survive in the environment. Indeed, in the field of complex adaptive systems, the intention is understanding very similar questions in nature. As an outlook, we also touch on some research directions pertaining to the adaptivity of the brain as well.
- Shervin Safavi “Brain as a Complex System, Harnessing Systems Neuroscience Tools & Notions for an Empirical Approach”, 2022 DOI: 10.15496/publikation-69434
- Yaneer Bar-Yam “Dynamics of Complex Systems”, Studies in Nonlinearity Boulder, CO: Westview Press, 2003
- Melanie Mitchell “Complexity: A Guided Tour” Oxford: Oxford University Press, 2011
- John H. Holland “Complexity: A Very Short Introduction” Oxford, United Kingdom: Oxford University Press, 2014
- Yaneer Bar-Yam “Why Complexity Is Different”, 2017 URL: https://necsi.edu/why-complexity-is-different
- Yoshiki Kuramoto “Self-Entrainment of a Population of Coupled Non-Linear Oscillators” In Int. Symp. Math. Probl. Theor. Phys., Lecture Notes in Physics Berlin, Heidelberg: Springer, 1975, pp. 420–422 DOI: 10.1007/BFb0013365
- Yoshiki Kuramoto “Chemical Oscillations, Waves, and Turbulence” Courier Corporation, 2003
- Patricia Smith Churchland and Terrence J. Sejnowski “The Computational Brain”, Computational Neuroscience Cambridge, Mass: MIT Press, 1992
- H.T. Siegelmann “Complex Systems Science and Brain Dynamics” In Frontiers in computational neuroscience 4, 2010 DOI: 10.3389/fncom.2010.00007
- G. Werner “Consciousness Viewed in the Framework of Brain Phase Space Dynamics, Criticality, and the Renormalization Group” In Chaos Soliton Fract 55, 2013, pp. 3–12 DOI: DOI 10.1016/j.chaos.2012.03.014
- O. Sporns, G. Tononi and G.M. Edelman “Connectivity and Complexity: The Relationship between Neuroanatomy and Brain Dynamics” In Neural Networks 13, 2000, pp. 909–922 DOI: Doi 10.1016/S0893-6080(00)00053-8
- W. Singer “The Brain, a Complex Self-organizing System” In Eur. Rev. 17.2, 2009, pp. 321–329 DOI: 10.1017/S1062798709000751
- Eckehard Olbrich, Peter Achermann and Thomas Wennekers “The Sleeping Brain as a Complex System” In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369.1952 Royal Society, 2011, pp. 3697–3707 DOI: 10.1098/rsta.2011.0199
- C. Koch “Systems Biology. Modular Biological Complexity” In Science 337, 2012, pp. 531–2 DOI: 10.1126/science.1218616
- “Complex Brain Networks: Graph Theoretical Analysis of Structural and Functional Systems” In Nature reviews. Neuroscience 10.3, 2009, pp. 186–98 DOI: 10.1038/nrn2575
- “Human Information Processing in Complex Networks” In Nat. Phys. Nature Publishing Group, 2020, pp. 1–9 DOI: 10.1038/s41567-020-0924-7
- Richard F. Betzel and Danielle S. Bassett “Multi-Scale Brain Networks” In NeuroImage 160, Functional Architecture of the Brain, 2017, pp. 73–83 DOI: 10.1016/j.neuroimage.2016.11.006
- “Understanding Complexity in the Human Brain” In Trends in cognitive sciences 15, 2011, pp. 200–9 DOI: 10.1016/j.tics.2011.03.006
- Gyorgy Buzsaki “Rhythms of the Brain” New York, USA: Oxford University Press, 2011
- D.R. Chialvo “Emergent Complex Neural Dynamics” In Nat Phys 6.10, 2010, pp. 744–750 DOI: Doi 10.1038/Nphys1803
- “The Small World of Psychopathology” In PLOS ONE 6.11 Public Library of Science, 2011, pp. e27407 DOI: 10.1371/journal.pone.0027407
- Martijn P. van den Heuvel and B.T.Thomas Yeo “A Spotlight on Bridging Microscale and Macroscale Human Brain Architecture” In Neuron 93.6, 2017, pp. 1248–1251 DOI: 10.1016/j.neuron.2017.02.048
- Lianne H. Scholtens and Martijn P. van den Heuvel “Multimodal Connectomics in Psychiatry: Bridging Scales From Micro to Macro” In Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 3.9, Computational Methods and Modeling in Psychiatry, 2018, pp. 767–776 DOI: 10.1016/j.bpsc.2018.03.017
- Martijn P. van den Heuvel, Lianne H. Scholtens and Ren S. Kahn “Multi-Scale Neuroscience of Psychiatric Disorders” In Biological Psychiatry, 2019 DOI: 10.1016/j.biopsych.2019.05.015
- Martijn P. Heuvel and Olaf Sporns “A Cross-Disorder Connectome Landscape of Brain Dysconnectivity” In Nat. Rev. Neurosci. 20.7, 2019, pp. 435 DOI: 10.1038/s41583-019-0177-6
- T.M. McKenna, T.A. McMullen and M.F. Shlesinger “The Brain as a Dynamic Physical System” In Neuroscience 60.3, 1994, pp. 587–605 DOI: 10.1016/0306-4522(94)90489-8
- Randall D. Beer “A Dynamical Systems Perspective on Agent-Environment Interaction” In Artificial Intelligence 72.1, 1995, pp. 173–215 DOI: 10.1016/0004-3702(94)00005-L
- “Dynamical Principles in Neuroscience” In Rev. Mod. Phys. 78.4, 2006, pp. 1213–1265 DOI: 10.1103/RevModPhys.78.1213
- Eugene M. Izhikevich “Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Computational Neuroscience)” Cambrige, Massachusetts, USA: The MIT Press, 2010
- “Neuronal Dynamics, From Single Neurons to Networks and Models of Cognition” University Printing House, Cambridge CB2 8BS, United Kingdom: Cambridge University Press, 2014
- “The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields” In PLoS computational biology 4.8, 2008, pp. e1000092 DOI: 10.1371/journal.pcbi.1000092
- “Large-Scale Model of Mammalian Thalamocortical Systems” In Proceedings of the National Academy of Sciences of the United States of America 105.9, 2008, pp. 3593–8 DOI: 10.1073/pnas.0712231105
- G. Deco, V.K. Jirsa and A.R. McIntosh “Emerging Concepts for the Dynamical Organization of Resting-State Activity in the Brain” In Nature reviews. Neuroscience 12, 2011, pp. 43–56 DOI: 10.1038/nrn2961
- “Reading a Neural Code” In Science 252.5014 American Association for the Advancement of Science, 1991, pp. 1854–1857 DOI: 10.1126/science.2063199
- “Reproducibility and Variability in Neural Spike Trains” In Science 275.5307 American Association for the Advancement of Science, 1997, pp. 1805–1808 DOI: 10.1126/science.275.5307.1805
- “Entropy and Information in Neural Spike Trains” In Phys. Rev. Lett. 80.1 American Physical Society, 1998, pp. 197–200 DOI: 10.1103/PhysRevLett.80.197
- Alexander Borst and Frédéric E. Theunissen “Information Theory and Neural Coding” In Nat. Neurosci. 2.11 Nature Publishing Group, 1999, pp. 947–957 DOI: 10.1038/14731
- “Spikes: Exploring the Neural Code” A Bradford Book, 1999
- G. Tononi “An Information Integration Theory of Consciousness” In BMC Neurosci. 5, 2004, pp. 42 DOI: 10.1186/1471-2202-5-42
- “Integrated Information in Discrete Dynamical Systems: Motivation and Theoretical Framework” In PLoS computational biology 4.6, 2008, pp. e1000091 DOI: 10.1371/journal.pcbi.1000091
- M. Oizumi, L. Albantakis and G. Tononi “From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0” In PLoS computational biology 10, 2014, pp. e1003588 DOI: 10.1371/journal.pcbi.1003588
- “Qualia: The Geometry of Integrated Information” In PLoS computational biology 5.8, 2009, pp. e1000462 DOI: 10.1371/journal.pcbi.1000462
- “Integrated Information Theory: From Consciousness to Its Physical Substrate” In Nature reviews. Neuroscience, 2016 DOI: 10.1038/nrn.2016.44
- James Sethna and Laboratory of Atomic and Solid State Physics James P. Sethna “Statistical Mechanics: Entropy, Order Parameters, and Complexity” OUP Oxford, 2006
- “Statistical Mechanics for Natural Flocks of Birds” In Proceedings of the National Academy of Sciences of the United States of America 109, 2012, pp. 4786–91 DOI: 10.1073/pnas.1118633109
- “Social Interactions Dominate Speed Control in Poising Natural Flocks near Criticality” In Proceedings of the National Academy of Sciences of the United States of America 111, 2014, pp. 7212–7 DOI: 10.1073/pnas.1324045111
- “The Statistical Mechanics of Twitter Communities” In J. Stat. Mech. 2019.9, 2019, pp. 093406 DOI: 10.1088/1742-5468/ab3af0
- Miguel A. Muñoz “Colloquium: Criticality and Dynamical Scaling in Living Systems” In Rev. Mod. Phys. 90.3, 2018, pp. 031001 DOI: 10.1103/RevModPhys.90.031001
- “A Quick and Easy Way to Estimate Entropy and Mutual Information for Neuroscience” In bioRxiv Cold Spring Harbor Laboratory, 2020, pp. 2020.08.04.236174 DOI: 10.1101/2020.08.04.236174
- T.D. Sanger “Neural Population Codes” In Curr. Opin. Neurobiol. 13, 2003, pp. 238–49
- M. Shamir “Emerging Principles of Population Coding: In Search for the Neural Code” In Curr. Opin. Neurobiol. 25C, 2014, pp. 140–148 DOI: 10.1016/j.conb.2014.01.002
- P. Fries “A Mechanism for Cognitive Dynamics: Neuronal Communication through Neuronal Coherence” In Trends in cognitive sciences 9, 2005, pp. 474–480 DOI: DOI 10.1016/j.tics.2005.08.011
- P. Fries “Rhythms for Cognition: Communication through Coherence” In Neuron 88, 2015, pp. 220–35 DOI: 10.1016/j.neuron.2015.09.034
- Christoph Von Der Malsburg, William A. Phillips and W. Singer “Malsburg, C: Dynamic Coordination in the Brain - From Neuron: From Neurons to Mind” Cambridge, Mass: The MIT Press, 2010
- “Observed Brain Dynamics” Oxford University Press, USA, 2007
- N.K. Logothetis “Intracortical Recordings and fMRI: An Attempt to Study Operational Modules and Networks Simultaneously” In NeuroImage 62.2, 2012, pp. 962–9 DOI: 10.1016/j.neuroimage.2012.01.033
- “Hippocampal–Cortical Interaction during Periods of Subcortical Silence” In Nature 491.7425 Nature Publishing Group, 2012, pp. 547–553 DOI: 10.1038/nature11618
- J.F. Ramirez-Villegas, N.K. Logothetis and M. Besserve “Diversity of Sharp-Wave-Ripple LFP Signatures Reveals Differentiated Brain-Wide Dynamical Events” In Proceedings of the National Academy of Sciences of the United States of America 112, 2015, pp. E6379–87 DOI: 10.1073/pnas.1518257112
- Cole Mathis, Tanmoy Bhattacharya and Sara Imari Walker “The Emergence of Life as a First-Order Phase Transition” In Astrobiology 17.3 Mary Ann Liebert, Inc., publishers, 2017, pp. 266–276 DOI: 10.1089/ast.2016.1481
- Dante R. Chialvo “Life at the Edge: Complexity and Criticality in Biological Function” In ArXiv181011737 Q-Bio, 2018 arXiv: http://arxiv.org/abs/1810.11737
- “Information Processing in Living Systems” In Annu Rev Conden Ma P 7, 2016, pp. 89–117 DOI: 10.1146/annurev-conmatphys-031214-014803
- “Are Biological Systems Poised at Criticality?” In J Stat Phys 144, 2011, pp. 268–302 DOI: 10.1007/s10955-011-0229-4
- “Optimal Dynamical Range of Excitable Networks at Criticality” In Nat Phys 2, 2006, pp. 348–352 DOI: DOI 10.1038/nphys289
- “Phase Transitions and Self-Organized Criticality in Networks of Stochastic Spiking Neurons” In Sci. Rep. 6, 2016, pp. 35831 DOI: 10.1038/srep35831
- Daniel B. Larremore, Woodrow L. Shew and Juan G. Restrepo “Predicting Criticality and Dynamic Range in Complex Networks: Effects of Topology” In Phys. Rev. Lett. 106.5 American Physical Society, 2011, pp. 058101 DOI: 10.1103/PhysRevLett.106.058101
- “Probing Spatial Inhomogeneity of Cholinergic Changes in Cortical State in Rat” In Sci. Rep. 9.1, 2019, pp. 9387 DOI: 10.1038/s41598-019-45826-4
- “Information Capacity and Transmission Are Maximized in Balanced Cortical Networks with Neuronal Avalanches” In The Journal of neuroscience : the official journal of the Society for Neuroscience 31.1, 2011, pp. 55–63 DOI: 10.1523/JNEUROSCI.4637-10.2011
- F. Vanni, M. Lukovic and P. Grigolini “Criticality and Transmission of Information in a Swarm of Cooperative Units” In Physical review letters 107, 2011, pp. 078103 DOI: ARTN 078103 DOI 10.1103/PhysRevLett.107.078103
- “Transmission of Information at Criticality” In Physica A 416, 2014, pp. 430–438 DOI: DOI 10.1016/j.physa.2014.08.066
- “Information Transfer and Criticality in the Ising Model on the Human Connectome” In PloS one 9, 2014, pp. e93616 DOI: 10.1371/journal.pone.0093616
- “Random Switching and Optimal Processing in the Perception of Ambiguous Signals” In Physical review letters 74, 1995, pp. 3077–3080 DOI: DOI 10.1103/PhysRevLett.74.3077
- G.S. Atwal “Statistical Mechanics of Multistable Perception” In bioRxiv, 2014 DOI: 10.1101/008177
- “Cortical Microcircuit Dynamics Mediating Binocular Rivalry: The Role of Adaptation in Inhibition” In Front Hum Neurosci 5, 2011, pp. 145 DOI: 10.3389/fnhum.2011.00145
- “Multi-Stable Perception Balances Stability and Sensitivity” In Frontiers in computational neuroscience 7, 2013, pp. 17 DOI: 10.3389/fncom.2013.00017
- “The Scientific Case for Brain Simulations” In Neuron 102.4, 2019, pp. 735–744 DOI: 10.1016/j.neuron.2019.03.027
- “Perspectives on Cognitive Neuroscience” In Science 242.4879 American Association for the Advancement of Science, 1988, pp. 741–745 DOI: 10.1126/science.3055294
- “Inferring Spike Trains from Local Field Potentials” In Journal of neurophysiology 99.3, 2008, pp. 1461–76 DOI: 10.1152/jn.00919.2007
- M. Rasch, N.K. Logothetis and G. Kreiman “From Neurons to Circuits: Linear Estimation of Local Field Potentials” In The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 2009, pp. 13785–96 DOI: 10.1523/JNEUROSCI.2390-09.2009
- C.Y. Li, M.M. Poo and Y. Dan “Burst Spiking of a Single Cortical Neuron Modifies Global Brain State” In Science 324.5927, 2009, pp. 643–6 DOI: 10.1126/science.1169957
- “Cortex-Wide BOLD fMRI Activity Reflects Locally-Recorded Slow Oscillation-Associated Calcium Waves” In eLife 6, 2017
- “Rapid Reconfiguration of the Functional Connectome after Chemogenetic Locus Coeruleus Activation” In Neuron 103.4, 2019, pp. 702–718.e5 DOI: 10.1016/j.neuron.2019.05.034
- M. Volgushev, S. Chauvette and I. Timofeev “Long-Range Correlation of the Membrane Potential in Neocortical Neurons during Slow Oscillation” In Progress in brain research 193, 2011, pp. 181–99 DOI: 10.1016/B978-0-444-53839-0.00012-0
- “Inhibitory Postsynaptic Potentials Carry Synchronized Frequency Information in Active Cortical Networks” In Neuron 47.3, 2005, pp. 423–35 DOI: 10.1016/j.neuron.2005.06.016
- “Modulation of Neuronal Interactions through Neuronal Synchronization” In Science 316, 2007, pp. 1609–12 DOI: 10.1126/science.1139597
- Michel Le Van Quyen “The Brainweb of Cross-Scale Interactions” In New Ideas in Psychology 29.2, 2011, pp. 57–63 DOI: 10.1016/j.newideapsych.2010.11.001
- “The Kuramoto Model: A Simple Paradigm for Synchronization Phenomena” In Rev. Mod. Phys. 77.1 American Physical Society, 2005, pp. 137–185 DOI: 10.1103/RevModPhys.77.137
- Michael Breakspear, Stewart Heitmann and Andreas Daffertshofer “Generative Models of Cortical Oscillations: Neurobiological Implications of the Kuramoto Model” In Front. Hum. Neurosci. 4 Frontiers, 2010 DOI: 10.3389/fnhum.2010.00190
- “Exploring the Nonlinear Dynamics of the Brain” In Journal of Physiology-Paris 97.4, Neuroscience and Computation, 2003, pp. 629–639 DOI: 10.1016/j.jphysparis.2004.01.019
- Michel Le Van Quyen “Disentangling the Dynamic Core: A Research Program for a Neurodynamics at the Large-Scale” In Biol. Res. 36.1 Sociedad de Biolog a de Chile, 2003, pp. 67–88 DOI: 10.4067/S0716-97602003000100006
- “Recurrent Neuronal Circuits in the Neocortex” In Current biology : CB 17, 2007, pp. R496–500 DOI: 10.1016/j.cub.2007.04.024
- Anthony J Bell “Levels and Loops: The Future of Artificial Intelligence and Neuroscience” In Phil.Trans. R. Soc. Lond.B Royal Society, 1999, pp. 8
- Anthony J. Bell “Towards a Cross-Level Theory of Neural Learning” In AIP Conference Proceedings 954.1 American Institute of Physics, 2007, pp. 56–73 DOI: 10.1063/1.2821301
- “Ephaptic Coupling of Cortical Neurons” In Nat. Neurosci. 14.2 Nature Publishing Group, 2011, pp. 217–223 DOI: 10.1038/nn.2727
- “Realistic Modeling of Mesoscopic Ephaptic Coupling in the Human Brain” In PLOS Computational Biology 16.6 Public Library of Science, 2020, pp. e1007923 DOI: 10.1371/journal.pcbi.1007923
- Hiba Sheheitli and Viktor K. Jirsa “A Mathematical Model of Ephaptic Interactions in Neuronal Fiber Pathways: Could There Be More than Transmission along the Tracts?” In Netw. Neurosci. 4.3 MIT Press, 2020, pp. 595–610 DOI: 10.1162/netn˙a˙00134
- “Ephaptic Coupling to Endogenous Electric Field Activity: Why Bother?” In Curr. Opin. Neurobiol. 31C, 2014, pp. 95–103 DOI: 10.1016/j.conb.2014.09.002
- Terrence J. Sejnowski, Patricia S. Churchland and J.Anthony Movshon “Putting Big Data to Good Use in Neuroscience” In Nat. Neurosci. 17.11 Nature Publishing Group, 2014, pp. 1440–1441 DOI: 10.1038/nn.3839
- M. Zeitler, P. Fries and S. Gielen “Assessing Neuronal Coherence with Single-Unit, Multi-Unit, and Local Field Potentials” In Neural computation 18, 2006, pp. 2256–81 DOI: 10.1162/neco.2006.18.9.2256
- Go Ashida, Hermann Wagner and Catherine E. Carr “Processing of Phase-Locked Spikes and Periodic Signals” In Analysis of Parallel Spike Trains, Springer Series in Computational Neuroscience Springer, Boston, MA, 2010, pp. 59–74 DOI: 10.1007/978-1-4419-5675-0˙4
- “The Pairwise Phase Consistency: A Bias-Free Measure of Rhythmic Neuronal Synchronization” In NeuroImage 51, 2010, pp. 112–22 DOI: 10.1016/j.neuroimage.2010.01.073
- “Improved Measures of Phase-Coupling between Spikes and the Local Field Potential” In Journal of computational neuroscience 33, 2012, pp. 53–75 DOI: 10.1007/s10827-011-0374-4
- “Measuring Directionality between Neuronal Oscillations of Different Frequencies” In NeuroImage 118, 2015, pp. 359–367 DOI: 10.1016/j.neuroimage.2015.05.044
- Z. Li, D. Cui and X. Li “Unbiased and Robust Quantification of Synchronization between Spikes and Local Field Potential” In Journal of neuroscience methods 269, 2016, pp. 33–8 DOI: 10.1016/j.jneumeth.2016.05.004
- Mohammad Zarei, Mehran Jahed and Mohammad Reza Daliri “Introducing a Comprehensive Framework to Measure Spike-LFP Coupling” In Front. Comput. Neurosci. 12, 2018 DOI: 10.3389/fncom.2018.00078
- “Neurophysiological Investigation of the Basis of the fMRI Signal” In Nature 412, 2001, pp. 150–7 DOI: 10.1038/35084005
- N.K. Logothetis “The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal” In The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 2003, pp. 3963–71
- N.K. Logothetis “What We Can Do and What We Cannot Do with fMRI” In Nature 453, 2008, pp. 869–78 DOI: 10.1038/nature06976
- “Neurophysiology of the BOLD fMRI Signal in Awake Monkeys” In Current biology : CB 18, 2008, pp. 631–40 DOI: 10.1016/j.cub.2008.03.054
- “Dopamine-Induced Dissociation of BOLD and Neural Activity in Macaque Visual Cortex” In Current biology : CB 24, 2014, pp. 2805–11 DOI: 10.1016/j.cub.2014.10.006
- “Temporal Kernel CCA and Its Application in Multimodal Neuronal Data Analysis” In Mach. Learn. 79.1-2, 2009, pp. 5–27 DOI: 10.1007/s10994-009-5153-3
- “Relationship between Neural and Hemodynamic Signals during Spontaneous Activity Studied with Temporal Kernel CCA” In Magnetic resonance imaging 28, 2010, pp. 1095–103 DOI: 10.1016/j.mri.2009.12.016
- Hans Liljenstroem “Mesoscopic Brain Dynamics” In Scholarpedia 7.9, 2012, pp. 4601 DOI: 10.4249/scholarpedia.4601
- G. Buzsaki, C.A. Anastassiou and C. Koch “The Origin of Extracellular Fields and Currents–EEG, ECoG, LFP and Spikes” In Nature reviews. Neuroscience 13.6, 2012, pp. 407–20 DOI: 10.1038/nrn3241
- “Modelling and Analysis of Local Field Potentials for Studying the Function of Cortical Circuits” In Nature reviews. Neuroscience 14.11, 2013, pp. 770–85 DOI: 10.1038/nrn3599
- O. Herreras “Local Field Potentials: Myths and Misunderstandings” In Front Neural Circuit 10, 2016, pp. 101 DOI: 10.3389/fncir.2016.00101
- “Investigating Large-Scale Brain Dynamics Using Field Potential Recordings: Analysis and Interpretation” In Nat. Neurosci., 2018, pp. 1 DOI: 10.1038/s41593-018-0171-8
- “Ensemble Patterns of Hippocampal CA3-CA1 Neurons during Sharp Wave–Associated Population Events” In Neuron 28.2, 2000, pp. 585–594 DOI: 10.1016/S0896-6273(00)00135-5
- “Role of Hippocampal CA2 Region in Triggering Sharp-Wave Ripples” In Neuron 91, 2016, pp. 1342–55 DOI: 10.1016/j.neuron.2016.08.008
- “Single-Unit Stability Using Chronically Implanted Multielectrode Arrays” In J. Neurophysiol. 102.2 American Physiological Society, 2009, pp. 1331–1339 DOI: 10.1152/jn.90920.2008
- “Fully Integrated Silicon Probes for High-Density Recording of Neural Activity” In Nature 551, 2017, pp. 232–236 DOI: 10.1038/nature24636
- Ashley L Juavinett, George Bekheet and Anne K Churchland “Chronically Implanted Neuropixels Probes Enable High-Yield Recordings in Freely Moving Mice” In eLife 8 eLife Sciences Publications, Ltd, 2019, pp. e47188 DOI: 10.7554/eLife.47188
- György Buzsáki “Large-Scale Recording of Neuronal Ensembles” In Nat. Neurosci. 7.5, 2004, pp. 446–451 DOI: 10.1038/nn1233
- Makoto Fukushima, Zenas C Chao and Naotaka Fujii “Studying Brain Functions with Mesoscopic Measurements: Advances in Electrocorticography for Non-Human Primates” In Current Opinion in Neurobiology 32, Large-Scale Recording Technology (32), 2015, pp. 124–131 DOI: 10.1016/j.conb.2015.03.015
- “High-Frequency Network Oscillation in the Hippocampus” In Science, 1992
- “Dissecting the Synapse- and Frequency-Dependent Network Mechanisms of In Vivo Hippocampal Sharp Wave-Ripples” In Neuron 100.5, 2018, pp. 1224–1240.e13 DOI: 10.1016/j.neuron.2018.09.041
- “Nonmonotonic Spatial Structure of Interneuronal Correlations in Prefrontal Microcircuits” In PNAS, 2018, pp. 201802356 DOI: 10.1073/pnas.1802356115
- “Flexible Resonance in Prefrontal Networks with Strong Feedback Inhibition” In PLOS Computational Biology 14.8 Public Library of Science, 2018, pp. e1006357 DOI: 10.1371/journal.pcbi.1006357
- “Prefrontal Oscillations Modulate the Propagation of Neuronal Activity Required for Working Memory” In Neurobiology of Learning and Memory 173, 2020, pp. 107228 DOI: 10.1016/j.nlm.2020.107228
- “Uncovering the Organization of Neural Circuits with Generalized Phase Locking Analysis” In PLOS Computational Biology 19.4 Public Library of Science, 2023, pp. e1010983 DOI: 10.1371/journal.pcbi.1010983
- V A Marčenko and L A Pastur “Distribution of Eigenvalues for Some Sets of Random Matrices” In Math. USSR Sb. 1.4, 1967, pp. 457–483 DOI: 10.1070/SM1967v001n04ABEH001994
- Greg W Anderson, Alice Guionnet and Ofer Zeitouni “An Introduction to Random Matrices” Cambridge; New York: Cambridge University Press, 2010 URL: http://dx.doi.org/10.1017/CBO9780511801334
- N.K. Logothetis “Neural-Event-Triggered fMRI of Large-Scale Neural Networks” In Curr. Opin. Neurobiol. 31C, 2014, pp. 214–222 DOI: 10.1016/j.conb.2014.11.009
- “A Thalamocortical Neural Mass Model of the EEG during NREM Sleep and Its Response to Auditory Stimulation” In PLOS Computational Biology 12.9 Public Library of Science, 2016, pp. e1005022 DOI: 10.1371/journal.pcbi.1005022
- Daniel V. Schroeder “An Introduction to Thermal Physics” San Francisco, CA: Pearson, 1999
- Claudio Castellano, Matteo Marsili and Alessandro Vespignani “Nonequilibrium Phase Transition in a Model for Social Influence” In Phys. Rev. Lett. 85.16 American Physical Society, 2000, pp. 3536–3539 DOI: 10.1103/PhysRevLett.85.3536
- “Neuronal Avalanches in Neocortical Circuits” In The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 2003, pp. 11167–77
- “Actin in Dendritic Spines Self-Organizes into a Critical State” In bioRxiv Cold Spring Harbor Laboratory, 2020, pp. 2020.04.22.054577 DOI: 10.1101/2020.04.22.054577
- “Single-Cell Membrane Potential Fluctuations Evince Network Scale-Freeness and Quasicriticality” In J. Neurosci., 2019, pp. 3163–18 DOI: 10.1523/JNEUROSCI.3163-18.2019
- “Differential Effects of Propofol and Ketamine on Critical Brain Dynamics” In bioRxiv Cold Spring Harbor Laboratory, 2020, pp. 2020.03.27.012070 DOI: 10.1101/2020.03.27.012070
- “Scale-Change Symmetry in the Rules Governing Neural Systems” In iScience 12, 2019, pp. 121–131 DOI: 10.1016/j.isci.2019.01.009
- A.M. Turing “I.—Computing Machinery and Intelligence” In Mind LIX, 1950, pp. 433–460 DOI: 10.1093/mind/LIX.236.433
- Takuma Tanaka, Takeshi Kaneko and Toshio Aoyagi “Recurrent Infomax Generates Cell Assemblies, Neuronal Avalanches, and Simple Cell-Like Selectivity” In Neural Computation 21.4, 2008, pp. 1038–1067 DOI: 10.1162/neco.2008.03-08-727
- “Information-Based Fitness and the Emergence of Criticality in Living Systems” In Proceedings of the National Academy of Sciences of the United States of America 111, 2014, pp. 10095–100 DOI: 10.1073/pnas.1319166111
- “Cooperation, Competition and the Emergence of Criticality in Communities of Adaptive Systems” In J. Stat. Mech. 2016.3, 2016, pp. 033203 DOI: 10.1088/1742-5468/2016/03/033203
- Pedro A.M. Mediano, Juan Carlos Farah and Murray Shanahan “Integrated Information and Metastability in Systems of Coupled Oscillators” In ArXiv160608313 Q-Bio, 2016 arXiv: http://arxiv.org/abs/1606.08313
- “The Emergence of Integrated Information, Complexity, and Consciousness at Criticality” In bioRxiv, 2019, pp. 521567 DOI: 10.1101/521567
- Heiko Hoffmann and David W. Payton “Optimization by Self-Organized Criticality” In Sci. Rep. 8.1 Nature Publishing Group, 2018, pp. 2358 DOI: 10.1038/s41598-018-20275-7
- “Pattern Recognition with Neuronal Avalanche Dynamics” In Phys. Rev. E 99.1, 2019, pp. 010302 DOI: 10.1103/PhysRevE.99.010302
- “Hierarchical Connectome Modes and Critical State Jointly Maximize Human Brain Functional Diversity” In Phys. Rev. Lett. 123.3 American Physical Society, 2019, pp. 038301 DOI: 10.1103/PhysRevLett.123.038301
- “Optimal Control of Excitable Systems near Criticality” In Phys. Rev. Research 2.3 American Physical Society, 2020, pp. 033450 DOI: 10.1103/PhysRevResearch.2.033450
- “Intrinsic timescales in the visual cortex change with selective attention and reflect spatial connectivity” In Nature communications 14.1 Nature Publishing Group UK London, 2023, pp. 1858 DOI: 10.1038/s41467-023-37613-7
- J.M. Beggs “The Criticality Hypothesis: How Local Cortical Networks Might Optimize Information Processing” In Philos T R Soc A 366, 2008, pp. 329–343 DOI: DOI 10.1098/rsta.2007.2092
- “The Functional Benefits of Criticality in the Cortex” In The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 19, 2013, pp. 88–100 DOI: 10.1177/1073858412445487
- Roxana Zeraati, Viola Priesemann and Anna Levina “Self-Organization Toward Criticality by Synaptic Plasticity” In Front. Phys. 9, 2021, pp. 103 DOI: 10.3389/fphy.2021.619661
- Roxana Zeraati “Studying Criticality and Its Different Measures in Neuroscience”, 2017
- “Earthquake Magnitude, Intensity, Energy, and Acceleration(Second Paper)” In Bulletin of the Seismological Society of America 46.2 GeoScienceWorld, 1956, pp. 105–145 URL: https://pubs.geoscienceworld.org/ssa/bssa/article/46/2/105/115777/Earthquake-magnitude-intensity-energy-and
- Bruce D. Malamud, Gleb Morein and Donald L. Turcotte “Forest Fires: An Example of Self-Organized Critical Behavior” In Science 281.5384 American Association for the Advancement of Science, 1998, pp. 1840–1842 DOI: 10.1126/science.281.5384.1840
- Theodore Edward Harris “The Theory of Branching Processes”, Grundlehren Der Mathematischen Wissenschaften Berlin Heidelberg: Springer-Verlag, 1963 URL: https://www.springer.com/gp/book/9783642518683
- J.P. Sethna, K.A. Dahmen and C.R. Myers “Crackling Noise” In Nature 410.6825, 2001, pp. 242–50 DOI: 10.1038/35065675
- “Universal Critical Dynamics in High Resolution Neuronal Avalanche Data” In Physical review letters 108, 2012, pp. 208102
- Laurence Aitchison, Nicola Corradi and Peter E. Latham “Zipf’s Law Arises Naturally When There Are Underlying, Unobserved Variables” In PLOS Computational Biology 12.12, 2016, pp. e1005110 DOI: 10.1371/journal.pcbi.1005110
- “Power-Law Statistics and Universal Scaling in the Absence of Criticality” In Phys. Rev. E 95.1, 2017, pp. 012413 DOI: 10.1103/PhysRevE.95.012413
- M. Breakspear “Dynamic Models of Large-Scale Brain Activity” In Nature neuroscience 20.3, 2017, pp. 340–352 DOI: 10.1038/nn.4497
- “Criticality in the Brain: A Synthesis of Neurobiology, Models and Cognition” In Progress in Neurobiology 158, 2017, pp. 132–152 DOI: 10.1016/j.pneurobio.2017.07.002
- “Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks” In Neural computation 16, 2004, pp. 1413–1436
- “Landau–Ginzburg Theory of Cortex Dynamics: Scale-free Avalanches Emerge at the Edge of Synchronization” In PNAS, 2018, pp. 201712989 DOI: 10.1073/pnas.1712989115
- M.O. Magnasco, O. Piro and G.A. Cecchi “Self-Tuned Critical Anti-Hebbian Networks” In Physical review letters 102, 2009, pp. 258102
- “Chaos and Correlated Avalanches in Excitatory Neural Networks with Synaptic Plasticity” In Phys. Rev. Lett. 118.9, 2017, pp. 098102 DOI: 10.1103/PhysRevLett.118.098102
- Karlis Kanders, Tom Lorimer and Ruedi Stoop “Avalanche and Edge-of-Chaos Criticality Do Not Necessarily Co-Occur in Neural Networks” In Chaos 27.4, 2017, pp. 047408 DOI: 10.1063/1.4978998
- D.J. Amit and Daniel J. Amit “Modeling Brain Function: The World of Attractor Neural Networks” Cambridge University Press, 1992
- “Thermodynamics and Signatures of Criticality in a Network of Neurons” In Proceedings of the National Academy of Sciences of the United States of America, 2015 DOI: 10.1073/pnas.1514188112
- “Signatures of Criticality Arise from Random Subsampling in Simple Population Models” In PLOS Computational Biology 13.10, 2017, pp. e1005718 DOI: 10.1371/journal.pcbi.1005718
- Joseph T. Lizier “The Local Information Dynamics of Distributed Computation in Complex Systems”, Springer Theses Berlin: Springer, 2013
- “Adaptation towards Scale-Free Dynamics Improves Cortical Stimulus Discrimination at the Cost of Reduced Detection” In PLoS computational biology 13, 2017, pp. e1005574 DOI: 10.1371/journal.pcbi.1005574
- “Sensory Communication” The MIT Press, 2012 DOI: 10.7551/mitpress/9780262518420.001.0001
- “Principles of Neural Coding” Boca Raton: CRC Press, 2013
- “Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images” In Nature 381, 1996, pp. 607–9 DOI: 10.1038/381607a0
- Eero P Simoncelli and Bruno A Olshausen “Natural Image Statistics and Neural Representation” In Annu. Rev. Neurosci. 24.1, 2001, pp. 1193–1216 DOI: 10.1146/annurev.neuro.24.1.1193
- Matthew Chalk, Olivier Marre and Gašper Tkačik “Toward a Unified Theory of Efficient, Predictive, and Sparse Coding” In Proc. Natl. Acad. Sci. U.S.A. 115.1, 2018, pp. 186–191 DOI: 10.1073/pnas.1711114115
- M. Boerlin, C.K. Machens and S. Deneve “Predictive Coding of Dynamical Variables in Balanced Spiking Networks” In PLoS computational biology 9, 2013, pp. e1003258 DOI: 10.1371/journal.pcbi.1003258
- M. Chalk, B. Gutkin and S. Deneve “Neural Oscillations as a Signature of Efficient Coding in the Presence of Synaptic Delays” In eLife 5, 2016 DOI: 10.7554/eLife.13824
- Koch Christof “The Quest for Consciousness: A Neurobiological Approach” Denver, Colo.: Roberts and Company Publishers, 2004
- N.K. Logothetis “Vision: A Window into Consciousness” In Sci Am 16.3, 2006, pp. 4–11 DOI: 10.1038/scientificamerican0906-4sp
- “The Neural Correlates of Consciousness: An Update” In Annals of the New York Academy of Sciences 1124.1, 2008, pp. 239–61 DOI: 10.1196/annals.1440.004
- Christof Koch “Consciousness: Confessions of a Romantic Reductionist” The MIT Press, 2012
- F. Crick “Visual Perception: Rivalry and Consciousness” In Nature 379.6565, 1996, pp. 485–6 DOI: 10.1038/379485a0
- “Perceptual Rivalry across Animal Species” In J. Comp. Neurol. n/a.n/a, 2020 DOI: 10.1002/cne.24939
- “Visual Competition” In Nat. Rev. Neurosci. 3.1, 2002, pp. 13–21 DOI: 10.1038/nrn701
- Theofanis I. Panagiotaropoulos, Vishal Kapoor and Nikos K. Logothetis “Subjective Visual Perception: From Local Processing to Emergent Phenomena of Brain Activity” In Philosophical Transactions of the Royal Society B: Biological Sciences 369.1641 Royal Society, 2014, pp. 20130534 DOI: 10.1098/rstb.2013.0534
- “Neural Correlates of Consciousness: Progress and Problems” In Nat. Rev. Neurosci. 17.5 Nature Publishing Group, 2016, pp. 307–321 DOI: 10.1038/nrn.2016.22
- “No Binocular Rivalry in the LGN of Alert Macaque Monkeys” In Vision research 36.9, 1996, pp. 1225–1234 DOI: Doi 10.1016/0042-6989(95)00232-4
- “The Role of Temporal Cortical Areas in Perceptual Organization” In Proceedings of the National Academy of Sciences of the United States of America 94.7, 1997, pp. 3408–13
- “Neuronal Discharges and Gamma Oscillations Explicitly Reflect Visual Consciousness in the Lateral Prefrontal Cortex” In Neuron 74.5, 2012, pp. 924–35 DOI: 10.1016/j.neuron.2012.04.013
- “Decoding Internally Generated Transitions of Conscious Contents in the Prefrontal Cortex without Subjective Reports” In Nat Commun 13.1 Nature Publishing Group, 2022, pp. 1535 DOI: 10.1038/s41467-022-28897-2
- J.F. Hipp, A.K. Engel and M. Siegel “Oscillatory Synchronization in Large-Scale Cortical Networks Predicts Perception” In Neuron 69, 2011, pp. 387–96 DOI: 10.1016/j.neuron.2010.12.027
- “Rhythms of Consciousness: Binocular Rivalry Reveals Large-Scale Oscillatory Network Dynamics Mediating Visual Perception” In PLoS One 4.7, 2009, pp. e6142 DOI: 10.1371/journal.pone.0006142
- “Changes in Functional Connectivity Support Conscious Object Recognition” In NeuroImage 63.4, 2012, pp. 1909–17 DOI: 10.1016/j.neuroimage.2012.07.056
- M. Wang, D. Arteaga and B.J. He “Brain Mechanisms for Simple Perception and Bistable Perception” In Proceedings of the National Academy of Sciences of the United States of America 110.35, 2013, pp. E3350–9 DOI: 10.1073/pnas.1221945110
- E.D. Lumer, K.J. Friston and G. Rees “Neural Correlates of Perceptual Rivalry in the Human Brain” In Science 280.5371, 1998, pp. 1930–4 DOI: 10.1126/science.280.5371.1930
- “Increased Synchronization of Neuromagnetic Responses during Conscious Perception” In The Journal of neuroscience : the official journal of the Society for Neuroscience 19.13, 1999, pp. 5435–48
- H. Bahmani, N. Logothetis and G. Keliris “Neural Correlates of Binocular Rivalry in Parietal Cortex”, 2011
- “Multistability, Perceptual Value, and Internal Foraging” In Neuron, 2022 DOI: 10.1016/j.neuron.2022.07.024
- “Oscillations in the Perception of Ambiguous Patterns - a Model Based on Synergetics” In Biological cybernetics 61.4, 1989, pp. 279–287 DOI: Doi 10.1007/Bf00203175
- “Attractors and Noise: Twin Drivers of Decisions and Multistability” In NeuroImage 52, 2010, pp. 740–751 DOI: DOI 10.1016/j.neuroimage.2009.12.126
- “Network Architecture of the Long-Distance Pathways in the Macaque Brain” In Proceedings of the National Academy of Sciences of the United States of America 107.30, 2010, pp. 13485–90 DOI: 10.1073/pnas.1008054107
- “An Integrative Theory of Prefrontal Cortex Function” In Annual review of neuroscience 24, 2001, pp. 167–202 DOI: 10.1146/annurev.neuro.24.1.167
- Janis Karan Hesse and Doris Y Tsao “A New No-Report Paradigm Reveals That Face Cells Encode Both Consciously Perceived and Suppressed Stimuli” In eLife 9 eLife Sciences Publications, Ltd, 2020, pp. e58360 DOI: 10.7554/eLife.58360
- “Binocular Rivalry: Frontal Activity Relates to Introspection and Action but Not to Perception” In The Journal of neuroscience : the official journal of the Society for Neuroscience 34.5, 2014, pp. 1738–47 DOI: 10.1523/JNEUROSCI.4403-13.2014
- “Is the Frontal Lobe Involved in Conscious Perception?” In Front. Psychol. 5, 2014 DOI: 10.3389/fpsyg.2014.01063
- David Leopold, A. Maier and N.K. Logothetis “Measuring Subjective Visual Perception in the Nonhuman Primate” In Journal of Consciousness Studies 10.9-10, 2003, pp. 115–130
- Gideon Rothschild, Israel Nelken and Adi Mizrahi “Functional Organization and Population Dynamics in the Mouse Primary Auditory Cortex” In Nat. Neurosci. 13.3 Nature Publishing Group, 2010, pp. 353–360 DOI: 10.1038/nn.2484
- “Measuring and Interpreting Neuronal Correlations” In Nature neuroscience 14.7, 2011, pp. 811–9 DOI: 10.1038/nn.2842
- “Spatial and Temporal Scales of Neuronal Correlation in Primary Visual Cortex” In The Journal of neuroscience : the official journal of the Society for Neuroscience 28.48, 2008, pp. 12591–603 DOI: 10.1523/JNEUROSCI.2929-08.2008
- “Spatial and Temporal Scales of Neuronal Correlation in Visual Area V4” In The Journal of neuroscience : the official journal of the Society for Neuroscience 33.12, 2013, pp. 5422–32 DOI: 10.1523/JNEUROSCI.4782-12.2013
- Daniel J. Denman and Diego Contreras “The Structure of Pairwise Correlation in Mouse Primary Visual Cortex Reveals Functional Organization in the Absence of an Orientation Map” In Cereb Cortex 24.10 Oxford Academic, 2014, pp. 2707–2720 DOI: 10.1093/cercor/bht128
- “The Spatial Structure of Correlated Neuronal Variability” In Nature neuroscience 20, 2017, pp. 107–114 DOI: 10.1038/nn.4433
- “Topography of Pyramidal Neuron Intrinsic Connections in Macaque Monkey Prefrontal Cortex (Areas 9 and 46)” In J. Comp. Neurol. 338.3, 1993, pp. 360–376 DOI: 10.1002/cne.903380304
- Y. Amir, M. Harel and Rafael Malach “Cortical Hierarchy Reflected in the Organization of Intrinsic Connections in Macaque Monkey Visual Cortex” In J. Comp. Neurol. 334.1, 1993, pp. 19–46 DOI: 10.1002/cne.903340103
- Jennifer S. Lund, Takashi Yoshioka and Jonathan B. Levitt “Comparison of Intrinsic Connectivity in Different Areas of Macaque Monkey Cerebral Cortex” In Cereb Cortex 3.2, 1993, pp. 148–162 DOI: 10.1093/cercor/3.2.148
- “Intrinsic Circuit Organization of the Major Layers and Sublayers of the Dorsolateral Prefrontal Cortex in the Rhesus Monkey” In J. Comp. Neurol. 359.1, 1995, pp. 131–143 DOI: 10.1002/cne.903590109
- “Intrinsic Connections in the Macaque Inferior Temporal Cortex” In J. Comp. Neurol. 368.4, 1996, pp. 467–486 DOI: 10.1002/(SICI)1096-9861(19960513)368:4¡467::AID-CNE1¿3.0.CO;2-2
- Hisashi Tanigawa, QuanXin Wang and Ichiro Fujita “Organization of Horizontal Axons in the Inferior Temporal Cortex and Primary Visual Cortex of the Macaque Monkey” In Cerebral Cortex 15.12, 2005, pp. 1887–1899 DOI: 10.1093/cercor/bhi067
- “Bistability of Prefrontal States Gates Access to Consciousness” In Neuron, 2023 DOI: 10.1016/j.neuron.2023.02.027
- “What Does Gamma Coherence Tell Us about Inter-Regional Neural Communication?” In Nature neuroscience 18, 2015, pp. 484–9 DOI: 10.1038/nn.3952
- “Parallel and Functionally Segregated Processing of Task Phase and Conscious Content in the Prefrontal Cortex” In Commun. Biol. 1.1 Nature Publishing Group, 2018, pp. 1–12 DOI: 10.1038/s42003-018-0225-1
- Kohitij Kar and James J. DiCarlo “Fast Recurrent Processing via Ventral Prefrontal Cortex Is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition” In bioRxiv Cold Spring Harbor Laboratory, 2020, pp. 2020.05.10.086959 DOI: 10.1101/2020.05.10.086959
- “Beyond Authorship: Attribution, Contribution, Collaboration, and Credit” In Learn. Publ. 28.2, 2015, pp. 151–155 DOI: 10.1087/20150211
- Shervin Safavi, Nikos K. Logothetis and Michel Besserve “From Univariate to Multivariate Coupling between Continuous Signals and Point Processes: A Mathematical Framework” In Neural Computation, 2021, pp. 1–67 DOI: 10.1162/neco˙a˙01389
- S. Safavi, N.K. Logothetis and M. Besserve “Multivariate Coupling Estimation between Continuous Signals and Point Processes” In NeurIPS 2019 Workshop: Learning with Temporal Point Processes, 2019 URL: https://slideslive.com/38922893/multivariate-coupling-estimation-between-continuous-signals-and-point-processes?locale=cs
- “Generalized Phase Locking Analysis: A Multivariate Technique for Investigating Spike-Field Coupling” In Bernstein Conference G-Node, 2021 DOI: 10.12751/NNCN.BC2021.P109
- Don H. Johnson “Point Process Models of Single-Neuron Discharges” In J Comput Neurosci 3.4, 1996, pp. 275–299 DOI: 10.1007/BF00161089
- “Recurrent Coevolutionary Latent Feature Processes for Continuous-Time Recommendation” In Proc. 1st Workshop Deep Learn. Recomm. Syst., DLRS 2016 New York, NY, USA: Association for Computing Machinery, 2016, pp. 29–34 DOI: 10.1145/2988450.2988451
- “Learning and Forecasting Opinion Dynamics in Social Networks” In Proc. 30th Int. Conf. Neural Inf. Process. Syst., NIPS’16 Red Hook, NY, USA: Curran Associates Inc., 2016, pp. 397–405
- “Uncovering the Organization of Neural Circuits with Generalized Phase Locking Analysis” In bioRxiv Cold Spring Harbor Laboratory, 2020, pp. 2020.12.09.413401 DOI: 10.1101/2020.12.09.413401
- “Generalized Phase Locking Analysis of Electrophysiology Data” In ESI Systems Neuroscience Conference (ESI-SyNC 2017): Principles of Structural and Functional Connectivity, 2017 URL: http://www.esi-frankfurt.de/programme/
- “Generalized Phase Locking Analysis of Electrophysiology Data” In AREADNE 2018: Research in Encoding And Decoding of Neural Ensembles AREADNE Foundation, 2018, pp. 88 URL: http://hdl.handle.net/21.11116/0000-0007-9867-A
- “Generalized Phase Locking Analysis of Electrophysiology Data” In Computational and Systems Neuroscience Meeting (COSYNE 2019), 2019, pp. 184–185 URL: http://hdl.handle.net/21.11116/0000-0003-2059-5
- “Uncovering the Organization of Neural Circuits with Generalized Phase-Locking Analysis” In Computational and Systems Neuroscience Meeting (COSYNE 2020), 2020, pp. 150–151 URL: http://hdl.handle.net/21.11116/0000-0009-2A63-9
- Odd O. Aalen, rnulf Borgan and H kon K. Gjessing “Survival and Event History Analysis: A Process Point of View”, Statistics for Biology and Health New York, NY: Springer, 2008
- Shervin Safavi, Nikos K. Logothetis and Michel Besserve “From Univariate to Multivariate Coupling between Continuous Signals and Point Processes: A Mathematical Framework” In ArXiv200504034 Q-Bio Stat, 2020 arXiv: http://arxiv.org/abs/2005.04034
- “Practical on Machine Learning for Neuroscience” In Machine Learning Summer School (MLSS 2016), 2016 URL: http://hdl.handle.net/21.11116/0000-0007-8E7B-0
- “Spatiotemporal Patterns of Neocortical Activity around Hippocampal Sharp-Wave Ripples” In eLife 9 eLife Sciences Publications, Ltd, 2020, pp. e51972 DOI: 10.7554/eLife.51972
- Walter J. Freeman and Michael Breakspear “Scale-Free Neocortical Dynamics” In Scholarpedia 2.2, 2007, pp. 1357 DOI: 10.4249/scholarpedia.1357
- B.J. He “Scale-Free Brain Activity: Past, Present, and Future” In Trends in cognitive sciences 18, 2014, pp. 480–7 DOI: 10.1016/j.tics.2014.04.003
- C. F votte, N. Bertin and J. Durrieu “Nonnegative Matrix Factorization with the Itakura-Saito Divergence: With Application to Music Analysis” In Neural Comput. 21.3, 2009, pp. 793–830 DOI: 10.1162/neco.2008.04-08-771
- “Shift-Invariant Dictionary Learning for Sparse Representations: Extending K-SVD” In 2008 16th Eur. Signal Process. Conf., 2008, pp. 1–5
- “From Optimal Efficient Coding to Criticality” In Conference on Complex Systems (CCS 2018) Satellite: Complexity from Cells to Consciousness: Free Energy, Integrated Information, and Epsilon Machines, 2018 URL: http://hdl.handle.net/21.11116/0000-0002-B7C0-6
- “Signatures of Criticality in Efficient Coding Networks” In DPG-Fr hjahrstagung 2019, 2019 URL: http://hdl.handle.net/21.11116/0000-0003-9654-5
- “Signatures of Criticality Observed in Efficient Coding Networks” In Computational and Systems Neuroscience Meeting (COSYNE 2020), 2020, pp. 109 URL: http://hdl.handle.net/21.11116/0000-0005-EC1B-4
- C.W. Eurich “Neural Dynamics and Neural Coding Two Complementary Approaches”, 2003 URL: http://www.neuro.uni-bremen.de/~eurich/Publications/Eurich_habil_part_I.pdf
- “Matching Storage and Recall: Hippocampal Spike Timing–Dependent Plasticity and Phase Response Curves” In Nat. Neurosci. 8.12 Nature Publishing Group, 2005, pp. 1677–1683 DOI: 10.1038/nn1561
- S. Deneve “Bayesian Spiking Neurons I: Inference” In Neural computation 20, 2008, pp. 91–117 DOI: 10.1162/neco.2008.20.1.91
- S. Deneve “Bayesian Spiking Neurons II: Learning” In Neural computation 20, 2008, pp. 118–45 DOI: 10.1162/neco.2008.20.1.118
- “Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons” In PLoS computational biology 7, 2011, pp. e1002211 DOI: 10.1371/journal.pcbi.1002211
- “Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition” In PLOS ONE 10.8, 2015, pp. e0134356 DOI: 10.1371/journal.pone.0134356
- Fleur Zeldenrust, Boris Gutkin and Sophie Den ve “Efficient and Robust Coding in Heterogeneous Recurrent Networks” In bioRxiv, 2019, pp. 804864 DOI: 10.1101/804864
- “Cortical-like Dynamics in Recurrent Circuits Optimized for Sampling-Based Probabilistic Inference” In Nat. Neurosci. 23.9 Nature Publishing Group, 2020, pp. 1138–1149 DOI: 10.1038/s41593-020-0671-1
- Chris Eliasmith “A Unified Approach to Building and Controlling Spiking Attractor Networks” In Neural Computation 17.6, 2005, pp. 1276–1314 DOI: 10.1162/0899766053630332
- D. Sussillo “Neural Circuits as Computational Dynamical Systems” In Curr Opin Neurobiol 25, 2014, pp. 156–63 DOI: 10.1016/j.conb.2014.01.008
- “Optimal Information Representation and Criticality in an Adaptive Sensory Recurrent Neuronal Network” In PLOS Computational Biology 12.2, 2016, pp. e1004698 DOI: 10.1371/journal.pcbi.1004698
- W. Maass “Searching for Principles of Brain Computation” In Curr. Opin. Behav. Sci. 11, 2016, pp. 81–92 DOI: 10.1016/j.cobeha.2016.06.003
- Christopher M Kim and Carson C Chow “Learning Recurrent Dynamics in Spiking Networks” In eLife 7, 2018, pp. e37124 DOI: 10.7554/eLife.37124
- “Computing by Modulating Spontaneous Cortical Activity Patterns as a Mechanism of Active Visual Processing” In Nat Commun 10.1, 2019, pp. 1–15 DOI: 10.1038/s41467-019-12918-8
- G.Bard Ermentrout, Roberto F. Gal n and Nathaniel N. Urban “Relating Neural Dynamics to Neural Coding” In Phys. Rev. Lett. 99.24 American Physical Society, 2007, pp. 248103 DOI: 10.1103/PhysRevLett.99.248103
- “Alpha Oscillations and Traveling Waves: Signatures of Predictive Coding?” In PLOS Biology 17.10, 2019, pp. e3000487 DOI: 10.1371/journal.pbio.3000487
- Jonathan Kadmon, Jonathan Timcheck and Surya Ganguli “Predictive Coding in Balanced Neural Networks with Noise, Chaos and Delays” In ArXiv200614178 Cond-Mat Q-Bio Stat, 2020 arXiv: http://arxiv.org/abs/2006.14178
- Kai Roeth, Shuai Shao and Julijana Gjorgjieva “Efficient Population Coding Depends on Stimulus Convergence and Source of Noise” In bioRxiv Cold Spring Harbor Laboratory, 2020, pp. 2020.06.15.151795 DOI: 10.1101/2020.06.15.151795
- Nikos Logothetis “Studies of Large-Scale Networks with DES- & NET-fMRI”, 2014
- “Distilling the Neural Correlates of Consciousness” In Neuroscience & Biobehavioral Reviews 36.2, 2012, pp. 737–746 DOI: 10.1016/j.neubiorev.2011.12.003
- Tom A. de Graaf, Po-Jang Hsieh and Alexander T. Sack “The ’correlates’ in Neural Correlates of Consciousness” In Neurosci Biobehav Rev 36.1, 2012, pp. 191–197 DOI: 10.1016/j.neubiorev.2011.05.012
- “No-Report Paradigms: Extracting the True Neural Correlates of Consciousness” In Trends in Cognitive Sciences 19.12, 2015, pp. 757–770 DOI: 10.1016/j.tics.2015.10.002
- “Introspection, Attention or Awareness? The Role of the Frontal Lobe in Binocular Rivalry” In Frontiers in human neuroscience 8, 2014, pp. 527 DOI: 10.3389/fnhum.2014.00527
- “Activity Changes in Early Visual Cortex Reflect Monkeys’ Percepts during Binocular Rivalry” In Nature 379.6565, 1996, pp. 549–53 DOI: 10.1038/379549a0
- “Divergence of fMRI and Neural Signals in V1 during Perceptual Suppression in the Awake Monkey” In Nature neuroscience 11.10, 2008, pp. 1193–200 DOI: 10.1038/nn.2173
- G.A. Keliris, N.K. Logothetis and A.S. Tolias “The Role of the Primary Visual Cortex in Perceptual Suppression of Salient Visual Stimuli” In The Journal of neuroscience : the official journal of the Society for Neuroscience 30.37, 2010, pp. 12353–65 DOI: 10.1523/JNEUROSCI.0677-10.2010
- David A. Leopold “Primary Visual Cortex: Awareness and Blindsight” In Annu. Rev. Neurosci. 35.1, 2012, pp. 91–109 DOI: 10.1146/annurev-neuro-062111-150356
- “Temporal Regimes of State-Dependent Correlated Variability in the Macaque Ventrolateral Prefrontal Cortex”, 2015, pp. 18 URL: https://sites.google.com/site/nenaconference/home
- “A Non-Monotonic Correlation Structure in the Macaque Ventrolateral Prefrontal Cortex” In AREADNE The AREADNE Foundation, 2016, pp. 53 URL: http://areadne.org/2016/pezaris-hatsopoulos-2016-areadne.pdf
- Rodney J. Douglas, Kevan A.C. Martin and David Whitteridge “A Canonical Microcircuit for Neocortex” In Neural Comput. 1.4 MIT Press, 1989, pp. 480–488 DOI: 10.1162/neco.1989.1.4.480
- Rodney J. Douglas and Kevan A.C. Martin “Neuronal Circuits of the Neocortex” In Annu. Rev. Neurosci. 27.1 Annual Reviews, 2004, pp. 419–451 DOI: 10.1146/annurev.neuro.27.070203.144152
- Rodney J. Douglas and Kevan A.C. Martin “Mapping the Matrix: The Ways of Neocortex” In Neuron 56.2, 2007, pp. 226–238 DOI: 10.1016/j.neuron.2007.10.017
- “Cortical Connectivity and Sensory Coding” In Nature 503.7474, 2013, pp. 51–8 DOI: 10.1038/nature12654
- “Correlated Discharges among Putative Pyramidal Neurons and Interneurons in the Primate Prefrontal Cortex” In Journal of neurophysiology 88.6, 2002, pp. 3487–3497 DOI: DOI 10.1152/jn.00188.2002
- “Circuits for Local and Global Signal Integration in Primary Visual Cortex” In J. Neurosci. 22.19 Society for Neuroscience, 2002, pp. 8633–8646 DOI: 10.1523/JNEUROSCI.22-19-08633.2002
- “A Modeler’s View on the Spatial Structure of Intrinsic Horizontal Connectivity in the Neocortex” In Progress in Neurobiology 92.3, 2010, pp. 277–292 DOI: 10.1016/j.pneurobio.2010.05.001
- W. Bair, E. Zohary and W.T. Newsome “Correlated Firing in Macaque Visual Area MT: Time Scales and Relationship to Behavior” In The Journal of neuroscience : the official journal of the Society for Neuroscience 21.5, 2001, pp. 1676–97
- “Perceptual Modulation of Pupillary Reflex in Macaque Monkeys” In Federation of European Neuroscience Society Featured Regional Meeting (FFRM 2015), 2015 URL: http://ffrm2015.com/
- “Modulation of Neural Discharges and Local Field Potentials in the Macaque Prefrontal Cortex during Binocular Rivalry” In 48th Annual Meeting of the Society for Neuroscience (Neuroscience 2018), 2018 URL: https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3005634
- “Spiking Activity in the Prefrontal Cortex Reflects Spontaneous Perceptual Transitions during a No Report Binocular Rivalry Paradigm” In 11th FENS Forum of Neuroscience, 2018 URL: http://hdl.handle.net/21.11116/0000-0006-CABF-0
- “Neuronal Discharges in the Prefrontal Cortex Reflect Changes in Conscious Perception during a No Report Binocular Rivalry Paradigm” In Association for the Scientific Study of Consciousness 23, 2019 URL: http://hdl.handle.net/21.11116/0000-0004-A9B4-2
- “Consciousness and Neuroscience” In Cerebral cortex 8.2, 1998, pp. 97–107
- “Empirical Support for Higher-Order Theories of Conscious Awareness” In Trends in cognitive sciences 15, 2011, pp. 365–73 DOI: 10.1016/j.tics.2011.05.009
- Bernard J. Baars “Global Workspace Theory of Consciousness: Toward a Cognitive Neuroscience of Human Experience” In Prog Brain Res 150, 2005, pp. 45–53 DOI: 10.1016/S0079-6123(05)50004-9
- “Experimental and Theoretical Approaches to Conscious Processing” In Neuron 70.2, 2011, pp. 200–27 DOI: 10.1016/j.neuron.2011.03.018
- W.J.M. Levelt “Note on the Distribution of Dominance Times in Binocular Rivalry” In Br. J. Psychol. 58.1-2, 1967, pp. 143–145 DOI: 10.1111/j.2044-8295.1967.tb01068.x
- E.M. Meyers “The Neural Decoding Toolbox” In Frontiers in neuroinformatics 7, 2013, pp. 8 DOI: 10.3389/fninf.2013.00008
- “Perisynaptic Activity in the Prefrontal Cortex Reflects Spontaneous Transitions in Conscious Visual Perception” In AREADNE 2018: Research in Encoding And Decoding of Neural Ensembles AREADNE Foundation, 2018, pp. 58 URL: http://hdl.handle.net/21.11116/0000-0001-944E-1
- G. Buzsaki, N. Logothetis and W. Singer “Scaling Brain Size, Keeping Timing: Evolutionary Preservation of Brain Rhythms” In Neuron 80.3, 2013, pp. 751–64 DOI: 10.1016/j.neuron.2013.10.002
- S.G. Mallat “A Wavelet Tour of Signal Processing” San Diego: Academic Press, 1999
- “Chronux: A Platform for Analyzing Neural Signals” In Journal of neuroscience methods 192.1, 2010, pp. 146–51 DOI: 10.1016/j.jneumeth.2010.06.020
- John H. Holland “Studying Complex Adaptive Systems” In Jrl Syst Sci & Complex 19.1, 2006, pp. 1–8 DOI: 10.1007/s11424-006-0001-z
- Edward S. Reed “Encountering the World: Toward an Ecological Psychology” New York: Oxford University Press, 1996
- Yael Niv “Reinforcement Learning in the Brain” In Journal of Mathematical Psychology 53.3, Special Issue: Dynamic Decision Making, 2009, pp. 139–154 DOI: 10.1016/j.jmp.2008.12.005
- Dominik R. Bach and Peter Dayan “Algorithms for Survival: A Comparative Perspective on Emotions” In Nat Rev Neurosci 18.5, 2017, pp. 311–319 DOI: 10.1038/nrn.2017.35
- Yael Niv “The Primacy of Behavioral Research for Understanding the Brain”, 2020 DOI: 10.31234/osf.io/y8mxe
- “Multiscale Analysis and Nonlinear Dynamics: From Genes to the Brain”, Reviews of Nonlinear Dynamics and Complexity Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013
- “Multiscale Modeling of Brain Dynamics: From Single Neurons and Networks to Mathematical Tools” In Wiley Interdiscip Rev Syst Biol Med 8.5, 2016, pp. 438–458 DOI: 10.1002/wsbm.1348
- “From Understanding Computation to Understanding Neural Circuitry” In Neurosci. Res. Program Bull. 15.3, 1979, pp. 470–488 URL: https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_3236532
- “Translational Perspectives for Computational Neuroimaging” In Neuron 87.4, 2015, pp. 716–732 DOI: 10.1016/j.neuron.2015.07.008
- “An Introduction to Model-Based Cognitive Neuroscience” New York: Springer, 2015
- Harold J. Morowitz and Jerome L. Singer “The Mind, The Brain And Complex Adaptive Systems” Reading, Mass: Westview Press, 1995
- Debashish Chowdhury “Immune Network: An Example of Complex Adaptive Systems” In Artificial Immune Systems and Their Applications Berlin, Heidelberg: Springer, 1999, pp. 89–104 DOI: 10.1007/978-3-642-59901-9˙5
- Nick C. Ellis and Diane Larsen-Freeman “Language as a Complex Adaptive System” John Wiley & Sons, 2009
- Jason Brownlee “Complex Adaptive Systems”, 2007
- Murray Gell-Mann “Complex Adaptive Systems” In Complexity: Metaphors, Models, and Reality Reading, MA: Addison-Wesley, 1994, pp. 17–45 URL: https://resolver.caltech.edu/CaltechAUTHORS:20150924-144445402
- “The Economy as an Evolving Complex System II” Addison-Wesley, 1997
- John H. Holland “Signals and Boundaries: Building Blocks for Complex Adaptive Systems” The MIT Press, 2012
- “Reinforcement Learning” In Scholarpedia 3.3, 2008, pp. 1448 DOI: 10.4249/scholarpedia.1448
- “Linking Connectivity, Dynamics, and Computations in Low-Rank Recurrent Neural Networks” In Neuron 99.3, 2018, pp. 609–623.e29 DOI: 10.1016/j.neuron.2018.07.003
- “Complementary Roles of Dimensionality and Population Structure in Neural Computations” In bioRxiv Cold Spring Harbor Laboratory, 2020, pp. 2020.07.03.185942 DOI: 10.1101/2020.07.03.185942
- Erik J. Peterson and Bradley Voytek “Healthy Oscillatory Coordination Is Bounded by Single-Unit Computation.” In bioRxiv, 2018, pp. 309427 DOI: 10.1101/309427
- Xue-Xin Wei and Alan A. Stocker “Mutual Information, Fisher Information, and Efficient Coding” In Neural Computation 28.2, 2015, pp. 305–326 DOI: 10.1162/NECO˙a˙00804
- “Relating Fisher Information to Order Parameters” In Phys. Rev. E 84.4, 2011, pp. 041116 DOI: 10.1103/PhysRevE.84.041116
- “Quantifying Collectivity” In Curr Opin Neurobiol 37, 2016, pp. 106–113 DOI: 10.1016/j.conb.2016.01.012
- Alexander C. Kalloniatis, Mathew L. Zuparic and Mikhail Prokopenko “Fisher Information and Criticality in the Kuramoto Model of Nonidentical Oscillators” In Phys. Rev. E 98.2 American Physical Society, 2018, pp. 022302 DOI: 10.1103/PhysRevE.98.022302
- “Optimal Fisher Decoding of Neural Activity Near Criticality” In The Functional Role of Critical Dynamics in Neural Systems, Springer Series on Bio- and Neurosystems Cham: Springer International Publishing, 2019, pp. 159–177 DOI: 10.1007/978-3-030-20965-0˙9
- “The Organizing Principles of Neuronal Avalanches: Cell Assemblies in the Cortex?” In Trends in neurosciences 30, 2007, pp. 101–10 DOI: 10.1016/j.tins.2007.01.005
- “Formation of Cortical Cell Assemblies” In Cold Spring Harb Sym 55, 1990, pp. 939–52
- “Organization of Cell Assemblies in the Hippocampus” In Nature 424, 2003, pp. 552–6 DOI: 10.1038/nature01834
- K.D. Harris “Neural Signatures of Cell Assembly Organization” In Nat Rev Neurosci 6.5, 2005, pp. 399–407 DOI: 10.1038/nrn1669
- G. Buzsaki “Neural Syntax: Cell Assemblies, Synapsembles, and Readers” In Neuron 68.3, 2010, pp. 362–85 DOI: 10.1016/j.neuron.2010.09.023
- “The Use of Hebbian Cell Assemblies for Nonlinear Computation” In Sci. Rep. 5.1 Nature Publishing Group, 2015, pp. 12866 DOI: 10.1038/srep12866
- “A Circuit Mechanism for Irrationalities in Decision-Making and NMDA Receptor Hypofunction: Behaviour, Computational Modelling, and Pharmacology” In bioRxiv Cold Spring Harbor Laboratory, 2019, pp. 826214 DOI: 10.1101/826214
- Michael J. Frank “Linking Across Levels of Computation in Model-Based Cognitive Neuroscience” In An Introduction to Model-Based Cognitive Neuroscience New York, NY: Springer, 2015, pp. 159–177 DOI: 10.1007/978-1-4939-2236-9˙8
- R. Moreno-Bote, J. Rinzel and N. Rubin “Noise-Induced Alternations in an Attractor Network Model of Perceptual Bistability” In Journal of neurophysiology 98.3, 2007, pp. 1125–39 DOI: 10.1152/jn.00116.2007
- “Balance between Noise and Adaptation in Competition Models of Perceptual Bistability” In Journal of computational neuroscience 27.1, 2009, pp. 37–54 DOI: 10.1007/s10827-008-0125-3
- “Canonical Cortical Circuit Model Explains Rivalry, Intermittent Rivalry, and Rivalry Memory” In PLOS Computational Biology 12.5, 2016, pp. e1004903 DOI: 10.1371/journal.pcbi.1004903
- Benjamin P. Cohen, Carson C. Chow and Shashaank Vattikuti “Dynamical Modeling of Multi-Scale Variability in Neuronal Competition” In Commun Biol 2.1, 2019, pp. 1–11 DOI: 10.1038/s42003-019-0555-7
- Peter Dayan “A Hierarchical Model of Binocular Rivalry” In Neural Comput. 10.5, 1998, pp. 1119–1135 DOI: 10.1162/089976698300017377
- J. Hohwy, A. Roepstorff and K. Friston “Predictive Coding Explains Binocular Rivalry: An Epistemological Review” In Cognition 108.3, 2008, pp. 687–701 DOI: 10.1016/j.cognition.2008.05.010
- G.S. Atwal “Statistical Mechanics of Multistable Perception” In BioRxiv, 2014 DOI: 10.1101/008177
- Samuel Gershman, Ed Vul and Joshua B. Tenenbaum “Perceptual Multistability as Markov Chain Monte Carlo Inference” In Advances in Neural Information Processing Systems, 2014, pp. 611–619
- “The Bayesian Brain: The Role of Uncertainty in Neural Coding and Computation” In Trends in neurosciences 27, 2004, pp. 712–9 DOI: 10.1016/j.tins.2004.10.007
- “Bayesian Brain: Probabilistic Approaches to Neural Coding” MIT Press, 2007
- P.C. Klink, R.J.A. van Wezel and R. van Ee “United We Sense, Divided We Fail: Context-Driven Perception of Ambiguous Visual Stimuli” In Philos Trans R Soc Lond B Biol Sci 367.1591, 2012, pp. 932–941 DOI: 10.1098/rstb.2011.0358
- “Psilocybin Slows Binocular Rivalry Switching through Serotonin Modulation.”, pp. 1
- “GABAergic Inhibition Gates Perceptual Awareness During Binocular Rivalry” In J. Neurosci. 39.42 Society for Neuroscience, 2019, pp. 8398–8407 DOI: 10.1523/JNEUROSCI.0836-19.2019
- “Genetic Contribution to Individual Variation in Binocular Rivalry Rate” In Proceedings of the National Academy of Sciences 107.6, 2010, pp. 2664–2668 DOI: 10.1073/pnas.0912149107
- “Psychiatric and Genetic Studies of Binocular Rivalry: An Endophenotype for Bipolar Disorder?” In Acta Neuropsychiatr. 23.1 Cambridge University Press, 2011, pp. 37–42 DOI: 10.1111/j.1601-5215.2010.00510.x
- Phillip C.F. Law, Steven M. Miller and Trung T. Ngo “The Effect of Stimulus Strength on Binocular Rivalry Rate in Healthy Individuals: Implications for Genetic, Clinical and Individual Differences Studies” In Physiology & Behavior 181, 2017, pp. 127–136 DOI: 10.1016/j.physbeh.2017.08.023
- “Genomic Analyses of Visual Cognition: Perceptual Rivalry and Top-Down Control” In J. Neurosci. 38.45, 2018, pp. 9668–9678 DOI: 10.1523/JNEUROSCI.1970-17.2018
- “Burst Firing Synchronizes Prefrontal and Anterior Cingulate Cortex during Attentional Control” In Current biology : CB 24, 2014, pp. 2613–21 DOI: 10.1016/j.cub.2014.09.046
- Pantelis Leptourgos “Dynamical Circular Inference in the General Population and the Psychosis Spectrum : Insights from Perceptual Decision Making”, 2018 URL: https://tel.archives-ouvertes.fr/tel-02132179
- “Analysis of Multimodal Neuroimaging Data” In IEEE Rev Biomed Eng 4, 2011, pp. 26–58 DOI: 10.1109/RBME.2011.2170675
- “Learning From More Than One Data Source: Data Fusion Techniques for Sensorimotor Rhythm-Based Brain-Computer Interfaces” In P Ieee 103, 2015, pp. 891–906 DOI: 10.1109/Jproc.2015.2413993
- “Topological Portraits of Multiscale Coordination Dynamics” In Journal of Neuroscience Methods 339, 2020, pp. 108672 DOI: 10.1016/j.jneumeth.2020.108672
- “Spikernels: Predicting Arm Movements by Embedding Population Spike Rate Patterns in Inner-Product Spaces” In Neural computation 17.3, 2005, pp. 671–90 DOI: 10.1162/0899766053019944
- A.R. Paiva, I. Park and J.C. Principe “A Reproducing Kernel Hilbert Space Framework for Spike Train Signal Processing” In Neural computation 21.2, 2009, pp. 424–49 DOI: 10.1162/neco.2008.09-07-614
- A.R.C. Paiva, I. Park and J.C. Principe “Inner Products for Representation and Learning in the Spike Train Domain” In Stat. Signal Process. Neurosci. Neurotechnology, 2010, pp. 265–309 DOI: 10.1016/B978-0-12-375027-3.00008-9
- “A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control” In Computational intelligence and neuroscience 2014, 2014, pp. 870160 DOI: 10.1155/2014/870160
- “Kernel Methods on Spike Train Space for Neuroscience: A Tutorial” In arXiv, 2013
- “Advances in the Computational Understanding of Mental Illness” In Neuropsychopharmacology Nature Publishing Group, 2020, pp. 1–17 DOI: 10.1038/s41386-020-0746-4
- Margit Burmeister, Melvin G. McInnis and Sebastian Zöllner “Psychiatric Genetics: Progress amid Controversy” In Nat. Rev. Genet. 9.7 Nature Publishing Group, 2008, pp. 527–540 DOI: 10.1038/nrg2381
- “Determining the Role of microRNAs in Psychiatric Disorders” In Nat. Rev. Neurosci. 16.4 Nature Publishing Group, 2015, pp. 201–212 DOI: 10.1038/nrn3879
- “The Polygenic Architecture of Schizophrenia — Rethinking Pathogenesis and Nosology” In Nat. Rev. Neurol. Nature Publishing Group, 2020, pp. 1–14 DOI: 10.1038/s41582-020-0364-0
- Leonhard Schilbach “Towards a Second-Person Neuropsychiatry” In Philos Trans R Soc Lond B Biol Sci 371.1686, 2016 DOI: 10.1098/rstb.2015.0081
- “The Promise of Two-Person Neuroscience for Developmental Psychiatry: Using Interaction-Based Sociometrics to Identify Disorders of Social Interaction” In Br. J. Psychiatry 215.5 Cambridge University Press, 2019, pp. 636–638 DOI: 10.1192/bjp.2019.73
- “Social Bayes: Using Bayesian Modeling to Study Autistic Trait–Related Differences in Social Cognition” In Biological Psychiatry 87.2, Molecular Mechanisms of Neurodevelopmental Disorders, 2020, pp. 185–193 DOI: 10.1016/j.biopsych.2019.09.032
- “Computational Psychiatry: New Perspectives on Mental Illness”, Str ngmann Forum Reports Cambridge, Massachusetts: The MIT Press, 2016 URL: https://esforum.de/publications/sfr20/Computational%20Psychiatry.html
- “Inflammation and Immunity in Schizophrenia: Implications for Pathophysiology and Treatment” In The Lancet Psychiatry 2.3, 2015, pp. 258–270 DOI: 10.1016/S2215-0366(14)00122-9
- Edward Bullmore “The Inflamed Mind: A Radical New Approach to Depression”, 2018
- Antonio L. Teixeira and Moises E. Bauer “Immunopsychiatry: A Clinician’s Introduction to the Immune Basis of Mental Disorders” Oxford University Press, 2019
- “Inflammation-Related Biomarkers in Major Psychiatric Disorders: A Cross-Disorder Assessment of Reproducibility and Specificity in 43 Meta-Analyses” In Transl Psychiatry 9.1, 2019, pp. 1–13 DOI: 10.1038/s41398-019-0570-y
- Andreas Mayer “Optimal Immune Systems : A Ressource Allocation and Information Processing View of Immune Defense”, 2017 URL: https://tel.archives-ouvertes.fr/tel-01707653
- Maya Schiller, Tamar L. Ben-Shaanan and Asya Rolls “Neuronal Regulation of Immunity: Why, How and Where?” In Nat. Rev. Immunol. Nature Publishing Group, 2020, pp. 1–17 DOI: 10.1038/s41577-020-0387-1
- Faraj Haddad, Salonee Patel and Susanne Schmid “Maternal Immune Activation by Poly I:C as a Preclinical Model for Neurodevelopmental Disorders: A Focus on Autism and Schizophrenia” In Neuroscience & Biobehavioral Reviews, 2020 DOI: 10.1016/j.neubiorev.2020.04.012
- Golam M Khandaker, Urs Meyer and Peter B Jones “Neuroinflammation and Schizophrenia”, 2020
- “Psychoneuroimmunology and Immunopsychiatry of Zebrafish” In Psychoneuroendocrinology 92, 2018, pp. 1–12 DOI: 10.1016/j.psyneuen.2018.03.014
- “Negative Feedback Control of Neuronal Activity by Microglia” In Nature Nature Publishing Group, 2020, pp. 1–7 DOI: 10.1038/s41586-020-2777-8
- “Brain’s Immune Cells Put the Brakes on Neurons” In Nature Nature Publishing Group, 2020 DOI: 10.1038/d41586-020-02713-7
- Grant S. Shields, Chandler M. Spahr and George M. Slavich “Psychosocial Interventions and Immune System Function: A Systematic Review and Meta-analysis of Randomized Clinical Trials” In JAMA Psychiatry 77.10 American Medical Association, 2020, pp. 1031–1043 DOI: 10.1001/jamapsychiatry.2020.0431
- “Social Isolation Alters Behavior, the Gut-Immune-Brain Axis, and Neurochemical Circuits in Male and Female Prairie Voles” In Neurobiology of Stress, 2020, pp. 100278 DOI: 10.1016/j.ynstr.2020.100278
- “Transdiagnostic Hippocampal Damage Patterns in Neuroimmunological Disorders” In NeuroImage: Clinical 28, 2020, pp. 102515 DOI: 10.1016/j.nicl.2020.102515
- “Remembering Immunity: Neuronal Ensembles in the Insular Cortex Encode and Retrieve Specific Immune Responses” In bioRxiv Cold Spring Harbor Laboratory, 2020, pp. 2020.12.03.409813 DOI: 10.1101/2020.12.03.409813
- “The Memory Orchestra: The Role of Astrocytes and Oligodendrocytes in Parallel to Neurons” In Current Opinion in Neurobiology 67, 2021, pp. 131–137 DOI: 10.1016/j.conb.2020.10.022
- “Circular Inference: Mistaken Belief, Misplaced Trust” In Current Opinion in Behavioral Sciences 11, Computational Modeling, 2016, pp. 40–48 DOI: 10.1016/j.cobeha.2016.04.001
- “Signatures of Criticality in Efficient Coding Networks” bioRxiv, 2023, pp. 2023.02.14.528465 DOI: 10.1101/2023.02.14.528465
Collections
Sign up for free to add this paper to one or more collections.