Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MIMO Integrated Sensing and Communication Exploiting Prior Information (2312.13048v1)

Published 20 Dec 2023 in cs.IT, eess.SP, and math.IT

Abstract: In this paper, we study a multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system where one multi-antenna base station (BS) sends information to a user with multiple antennas in the downlink and simultaneously senses the location parameter of a target based on its reflected echo signals received back at the BS receive antennas. We focus on the case where the location parameter to be sensed is unknown and random, for which the prior distribution information is available for exploitation. First, we propose to adopt the posterior Cram\'er-Rao bound (PCRB) as the sensing performance metric with prior information, which quantifies a lower bound of the mean-squared error (MSE). Since the PCRB is in a complicated form, we derive a tight upper bound of it to draw more insights. Based on this, we analytically show that by exploiting the prior distribution information, the PCRB is always no larger than the CRB averaged over random location realizations without prior information exploitation. Next, we formulate the transmit covariance matrix optimization problem to minimize the sensing PCRB under a communication rate constraint. We obtain the optimal solution and derive useful properties on its rank. Then, by considering the derived PCRB upper bound as the objective function, we propose a low-complexity suboptimal solution in semi-closed form. Numerical results demonstrate the effectiveness of our proposed designs in MIMO ISAC exploiting prior information.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. C. Xu and S. Zhang, “MIMO radar transmit signal optimization for target localization exploiting prior information,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2023, pp. 310–315.
  2. D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, D. Niyato, O. Dobre, and H. V. Poor, “6G internet of things: A comprehensive survey,” IEEE Internet Things J., vol. 9, no. 1, pp. 359–383, Jan. 2022.
  3. A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T. X. Han, C. Liu, R. Du, D. K. P. Tan, J. Lu, Y. Shen, F. Colone, and K. Chetty, “A survey on fundamental limits of integrated sensing and communication,” IEEE Commun. Surv. Tut., vol. 24, no. 2, pp. 994–1034, Feb. 2022.
  4. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022.
  5. G. N. Saddik, R. S. Singh, and E. R. Brown, “Ultra-wideband multifunctional communications/radar system,” IEEE Trans. Microw. Theory Technol., vol. 55, no. 7, pp. 1431–1437, Jul. 2007.
  6. A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity,” IEEE Trans. Signal Process., vol. 64, no. 8, pp. 2168–2181, Apr. 2016.
  7. T. Huang, N. Shlezinger, X. Xu, Y. Liu, and Y. C. Eldar, “MAJoRCom: A dual-function radar communication system using index modulation,” IEEE Trans. Signal Process., vol. 68, pp. 3423–3438, May 2020.
  8. D. Garmatyuk, J. Schuerger, K. Kauffman, and S. Spalding, “Wideband OFDM system for radar and communications,” in Proc. IEEE Radar Conf., 2009, pp. 1–6.
  9. Q. Shi, L. Liu, S. Zhang, and S. Cui, “Device-free sensing in OFDM cellular network,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1838–1853, Jun. 2022.
  10. L. Liu and S. Zhang, “A two-stage radar sensing approach based on MIMO-OFDM technology,” in Proc. IEEE Global Commun. Conf. (Globecom) Wkshps., Dec. 2020.
  11. Q. Wang, L. Liu, S. Zhang, and F. Lau, “Trilateration-based device-free sensing: Two base stations and one passive IRS are sufficient,” in Proc. IEEE Global Commun. Conf. (Globecom), Dec. 2022.
  12. Q. Shi, L. Liu, and S. Zhang, “Joint data association, NLOS mitigation, and clutter suppression for networked device-free sensing in 6G cellular network,” in Proc. IEEE Int. Conf. Acoustics Speech Signal Process. (ICASSP), Jun. 2023.
  13. R. F. Tigrek, W. J. A. De Heij, and P. Van Genderen, “OFDM signals as the radar waveform to solve doppler ambiguity,” IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 1, pp. 130–143, Jan. 2012.
  14. F. Liu, C. Masouros, A. Li, H. Sun, and L. Hanzo, “MU-MIMO communications with MIMO radar: From co-existence to joint transmission,” IEEE Trans. Wireless Commun., vol. 17, no. 4, pp. 2755–2770, Apr. 2018.
  15. X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, and Y. C. Eldar, “Joint transmit beamforming for multiuser MIMO communications and MIMO radar,” IEEE Trans. Signal Process., vol. 68, pp. 3929–3944, Jun. 2020.
  16. R. Liu, M. Li, Y. Liu, Q. Wu, and Q. Liu, “Joint transmit waveform and passive beamforming design for RIS-aided DFRC systems,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 5, pp. 995–1010, May 2022.
  17. Z. He, W. Xu, H. Shen, D. W. K. Ng, Y. C. Eldar, and X. You, “Full-duplex communication for ISAC: Joint beamforming and power optimization,” IEEE J. Sel. Areas Commun., vol. 41, no. 9, pp. 2920–2936, Sep. 2023.
  18. C. R. Rao, “Information and the accuracy attainable in the estimation of statistical parameters,” in Breakthroughs in Statistics.   Springer, 1992, pp. 235–247.
  19. I. Bekkerman and J. Tabrikian, “Target detection and localization using MIMO radars and sonars,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3873–3883, Sep. 2006.
  20. R. Boyer, “Performance bounds and angular resolution limit for the moving colocated MIMO radar,” IEEE Trans. Signal Process., vol. 59, no. 4, pp. 1539–1552, Apr. 2011.
  21. F. Liu, Y.-F. Liu, A. Li, C. Masouros, and Y. C. Eldar, “Cramér-Rao bound optimization for joint radar-communication beamforming,” IEEE Trans. Signal Process., vol. 70, pp. 240–253, Dec. 2022.
  22. H. Hua, T. X. Han, and J. Xu, “MIMO integrated sensing and communication: CRB-Rate tradeoff,” IEEE Trans. Wireless Commun., 2023, Early Access.
  23. X. Song, X. Qin, J. Xu, and R. Zhang, “Cramér-Rao bound minimization for IRS-enabled multiuser integrated sensing and communications.” [Online]. Available: https://arxiv.org/abs/2306.17493
  24. R. Boyer and G. Bouleux, “Oblique projections for direction-of-arrival estimation with prior knowledge,” IEEE Trans. Signal Process., vol. 56, no. 4, pp. 1374–1387, Apr. 2008.
  25. P. Tichavsky, “Posterior Cramér-Rao bound for adaptive harmonic retrieval,” IEEE Trans. Signal Process., vol. 43, no. 5, pp. 1299–1302, May 1995.
  26. J. Dauwels, “Computing Bayesian Cramér-Rao bounds,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Sep. 2005, pp. 425–429.
  27. P. Tichavsky, C. Muravchik, and A. Nehorai, “Posterior Cramér-Rao bounds for discrete-time nonlinear filtering,” IEEE Trans. Signal Process., vol. 46, no. 5, pp. 1386–1396, May 1998.
  28. L. Zuo, R. Niu, and P. K. Varshney, “Conditional posterior Cramér-Rao lower bounds for nonlinear sequential bayesian estimation,” IEEE Trans. Signal Process., vol. 59, no. 1, pp. 1–14, Jan. 2011.
  29. Z. Zhang, T. Jiang, and W. Yu, “Active sensing for localization with reconfigurable intelligent surface,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2023.
  30. W. Huleihel, J. Tabrikian, and R. Shavit, “Optimal adaptive waveform design for cognitive MIMO radar,” IEEE Trans. Signal Process., vol. 61, no. 20, pp. 5075–5089, Jun. 2013.
  31. N. Sharaga, J. Tabrikian, and H. Messer, “Optimal cognitive beamforming for target tracking in MIMO radar/sonar,” IEEE J. Sel. Topics Signal Process., vol. 9, no. 8, pp. 1440–1450, Dec. 2015.
  32. K. M. Attiah and W. Yu, “Active beamforming for integrated sensing and communication,” in Proc. IEEE Int. Conf. Commun. (ICC) Wkshps., May 2023.
  33. B. Teng, X. Yuan, R. Wang, and S. Jin, “Bayesian user localization and tracking for reconfigurable intelligent surface aided mimo systems,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 5, pp. 1040–1054, Aug. 2022.
  34. A. W. Visser, “Using random walk models to simulate the vertical distribution of particles in a turbulent water column,” Mar. Ecol. Prog. Ser., vol. 158, pp. 275–281, Nov. 1997.
  35. K. Hou and S. Zhang, “Secure integrated sensing and communication exploiting target location distribution,” in Proc. IEEE Global Commun. Conf. (Globecom), Dec. 2023.
  36. Y. Shen and M. Z. Win, “Fundamental limits of wideband localization—Part I: A general framework,” IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 4956–4980, Oct. 2010.
  37. X. Gao, M. Sitharam, and A. E. Roitberg, “Bounds on the Jensen gap, and implications for mean-concentrated distributions.” [Online]. Available: https://arxiv.org/abs/1712.05267
  38. M. Grant and S. Boyd. (Jun. 2015). CVX: MATLAB Software for Disciplined Convex Programming. [Online]. Available: http://cvxr.com/cvx/
  39. Y. Huang and D. P. Palomar, “Rank-constrained separable semidefinite programming with applications to optimal beamforming,” IEEE Trans. Signal Process., vol. 58, no. 2, pp. 664–678, Feb. 2010.
  40. I. Kodrasi and S. Doclo, “Analysis of eigenvalue decomposition-based late reverberation power spectral density estimation,” IEEE/ACM Trans. Audio, Speech, Language Process., vol. 26, no. 6, pp. 1106–1118, Jun. 2018.
  41. S. Boyd, “Convex optimization II,” Stanford University. [Online]. Available: http://www.stanford.edu/class/ee364b/lectures.html
  42. R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless information and power transfer,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 1989–2001, May 2013.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com