Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Fairness-Aware Spectrum Auction for Enhanced Licensed Shared Access in 6G Networks (2312.12867v1)

Published 20 Dec 2023 in eess.SY, cs.GT, and cs.SY

Abstract: This article introduces a new approach to address the spectrum scarcity challenge in 6G networks by implementing the enhanced licensed shared access (ELSA) framework. Our proposed auction mechanism aims to ensure fairness in spectrum allocation to mobile network operators (MNOs) through a novel weighted auction called the fair Vickery-Clarke-Groves (FVCG) mechanism. Through comparison with traditional methods, the study demonstrates that the proposed auction method improves fairness significantly. We suggest using spectrum sensing and integrating UAV-based networks to enhance efficiency of the LSA system. This research employs two methods to solve the problem. We first propose a novel greedy algorithm, named market share based weighted greedy algorithm (MSWGA) to achieve better fairness compared to the traditional auction methods and as the second approach, we exploit deep reinforcement learning (DRL) algorithms, to optimize the auction policy and demonstrate its superiority over other methods. Simulation results show that the deep deterministic policy gradient (DDPG) method performs superior to soft actor critic (SAC), MSWGA, and greedy methods. Moreover, a significant improvement is observed in fairness index compared to the traditional greedy auction methods. This improvement is as high as about 27% and 35% when deploying the MSWGA and DDPG methods, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. M.-M. Zhao, Q. Shi, and M.-J. Zhao, “Efficiency maximization for UAV-enabled mobile relaying systems with laser charging,” IEEE Transactions on Wireless Communications, vol. 19, no. 5, pp. 3257–3272, 2020.
  2. G. Geraci, D. López-Pérez, M. Benzaghta, and S. Chatzinotas, “Integrating terrestrial and non-terrestrial networks: 3D opportunities and challenges,” IEEE Communications Magazine, 2022.
  3. CEPT Working Group Frequency Management, “ECC Report 205: Licensed Shared Access (LSA),” technical report, Electronic Communications Committee (ECC), February 2014.
  4. M. Matinmikko, H. Okkonen, M. Palola, S. Yrjola, P. Ahokangas, and M. Mustonen, “Spectrum sharing using licensed shared access: the concept and its workflow for LTE-advanced networks,” IEEE Wireless Communications, vol. 21, no. 2, pp. 72–79, 2014.
  5. V. Frascolla, A. J. Morgado, A. Gomes, M. M. Butt, N. Marchetti, K. Voulgaris, and C. B. Papadias, “Dynamic Licensed Shared Access-A new architecture and spectrum allocation techniques,” in Proc. IEEE 84th Vehicular Technology. Conf. (VTC-Fall), Montréal, Canada, 18–21 Sep, 2016, pp.1–5.
  6. A. Morgado, A. Gomes, V. Frascolla, K. Ntougias, C. Papadias, D. Slock, E. Avdic, N. Marchetti, N. Haziza, H. Anouar, et al., “Dynamic LSA for 5G networks the ADEL perspective,” in Proc. IEEE European Conference on Networks and Communications. Conf. (EuCNC), Paris, France, 29 June-2 July, 2015, pp.190–194.
  7. Cambridge University Press, 2020.
  8. B. Shang, V. Marojevic, Y. Yi, A. S. Abdalla, and L. Liu, “Spectrum sharing for UAV communications: Spatial spectrum sensing and open issues,” IEEE Vehicular Technology Magazine, vol. 15, no. 2, pp. 104–112, 2020.
  9. S. O. Onidare, K. Navaie, and Q. Ni, “Spectral Efficiency of Dynamic Licensed Shared Access,” IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 15149–15161, 2020.
  10. M. M. Butt, I. Macaluso, C. Galiotto, and N. Marchetti, “Fair dynamic spectrum management in licensed shared access systems,” IEEE Systems Journal, vol. 13, no. 3, pp. 2363–2374, 2018.
  11. H. Kokkinen, S. Yrjölä, J. Milheiro, J. P. Borrego, and N. Carvalho, “Results of the demonstration of licensed shared access with sensing of secondary signal,” in 2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 1–9, IEEE, 2019.
  12. B. Shang, L. Liu, R. M. Rao, V. Marojevic, and J. H. Reed, “3D spectrum sharing for hybrid D2D and UAV networks,” IEEE Transactions on Communications, vol. 68, no. 9, pp. 5375–5389, 2020.
  13. X. Liu, M. Guan, X. Zhang, and H. Ding, “Spectrum sensing optimization in an UAV-based cognitive radio,” IEEE Access, vol. 6, pp. 44002–44009, 2018.
  14. J. Wu, Y. Chen, P. Li, J. Zhang, C. Wang, J. Tang, L. Xia, C. Lu, and T. Song, “Optimisation of virtual cooperative spectrum sensing for UAV-based interweave cognitive radio system,” IET Communications, vol. 15, no. 10, pp. 1368–1379, 2021.
  15. A. Chouayakh, A. Bechler, I. Amigo, L. Nuaymi, and P. Maillé, “Designing LSA spectrum auctions: mechanism properties and challenges.” working paper or preprint, 2020.
  16. M. Devi, N. Sarma, and S. K. Deka, “A Double Auction Framework for Multi-Channel Multi-Winner Heterogeneous Spectrum Allocation in Cognitive Radio Networks,” IEEE Access, vol. 9, pp. 72239–72258, 2021.
  17. A. Chouayakh, A. Bechler, I. Amigo, L. Nuaymi, and P. Maillé, “An ascending implementation of the Vickrey-Clarke-Groves mechanism for the Licensed Shared Access,” in Proc. Springer Network Games, Control and Optimization: 10th International. Conf. (NetGCooP), France, 22–24 Sep, 2021, pp.87–100.
  18. P. Sujit and R. Beard, “Distributed sequential auctions for multiple UAV task allocation,” in Proc. IEEE American Control. Conf. (ACC), New York City, USA, 11-13 July, 2007, pp.3955–3960.
  19. X. Feng, P. Lin, and Q. Zhang, “FlexAuc: Serving dynamic demands in a spectrum trading market with flexible auction,” IEEE Transactions on wireless communications, vol. 14, no. 2, pp. 821–830, 2014.
  20. D. Csercsik and E. Jorswieck, “Preallocation-based combinatorial auction for efficient fair channel assignments in multi-connectivity networks,” IEEE Transactions on Wireless Communications, 2023.
  21. A. Chouayakh, A. Bechler, I. Amigo, L. Nuaymi, and P. Maillé, “PAM: A fair and truthful mechanism for 5G dynamic spectrum allocation,” in 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–6, IEEE, 2018.
  22. J. McMenamy, A. Farhang, N. Marchetti, and I. Macaluso, “Enhanced auction-assisted LSA,” in Proc. IEEE International Symposium on Wireless Communication Systems. Conf. (ISWCS), Poznan, Poland, 20-23 Sep, 2016, pp.517–522.
  23. G. Santana, R. S. Cristo, C. Dezan, J.-P. Diguet, D. P. Osorio, and K. R. Branco, “Cognitive Radio for UAV communications: Opportunities and future challenges,” in Proc. IEEE International Conference on Unmanned Aircraft Systems. Conf. (ICUAS), Dallas Marriot City Center, Dallas (TX), USA, 12-15 Jun, 2018, pp.760–768.
  24. Q. Cheng, D. Yin, J. Yang, and L. Shen, “An auction-based multiple constraints task allocation algorithm for multi-UAV system,” in Proc. IEEE International Conference on Cybernetics, Robotics and Control Conf. (CRC), Hong Kong, China, 19-21 Aug, 2016, pp.1–5.
  25. X. Liu, K.-Y. Lam, F. Li, J. Zhao, L. Wang, and T. S. Durrani, “Spectrum sharing for 6G integrated satellite-terrestrial communication networks based on NOMA and CR,” IEEE Network, vol. 35, no. 4, pp. 28–34, 2021.
  26. H. Wang, J. Wang, G. Ding, Z. Xue, L. Zhang, and Y. Xu, “Robust spectrum sharing in air-ground integrated networks: Opportunities and challenges,” IEEE Wireless Communications, vol. 27, no. 3, pp. 148–155, 2020.
  27. W. Zhang, R. K. Mallik, and K. B. Letaief, “Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks,” IEEE transactions on wireless communications, vol. 8, no. 12, pp. 5761–5766, 2009.
  28. D. Niyato and E. Hossain, “Competitive pricing for spectrum sharing in cognitive radio networks: Dynamic game, inefficiency of nash equilibrium, and collusion,” IEEE journal on selected areas in communications, vol. 26, no. 1, pp. 192–202, 2008.
  29. P. Dütting, Z. Feng, H. Narasimhan, D. Parkes, and S. S. Ravindranath, “Optimal auctions through deep learning,” in Proc. PMLR International Conference on Machine Learning. Conf. (ICML), Long Beach, CA, USA, 10-15 June, 2019, pp.1706–1715.
  30. A. Shamsoshoara, M. Khaledi, F. Afghah, A. Razi, and J. Ashdown, “Distributed cooperative spectrum sharing in uav networks using multi-agent reinforcement learning,” in Proc. IEEE 16th IEEE Annual Consumer Communications & Networking. Conf. (CCNC), Las Vegas, USA, 11-14 January, 2019, pp.1–6.
  31. N. Hosseini, H. Jamal, J. Haque, T. Magesacher, and D. W. Matolak, “UAV command and control, navigation and surveillance: A review of potential 5G and satellite systems,” in Proc. IEEE Aerospace. Conf., Montana, USA, 2-9 March, 2019, pp.1–10.
  32. H. Zhang, X. Da, and H. Hu, “Multi-UAV cooperative spectrum sensing in cognitive UAV network,” in Proc. the 5th International Conference on Communication and Information Processing. Conf. (ICCIP), Chongqing, China, 15 - 17 November, 2019, pp.273–278.
  33. N. R. Banavathu and M. Z. A. Khan, “Optimal n-out-of-k voting rule for cooperative spectrum sensing with energy detector over erroneous control channel,” in Proc. IEEE 81st vehicular technology. Conf. (VTC Spring), Glasgow, Scotland, 11–14 May, 2015, pp.1–5.
  34. S. Bikhchandani, S. De Vries, J. Schummer, and R. V. Vohra, “Linear programming and Vickrey auctions,” IMA Volumes in Mathematics and its Applications, vol. 127, pp. 75–116, 2001.
  35. M. R. Carrell and J. E. Dittrich, “Equity theory: The recent literature, methodological considerations, and new directions,” Academy of management review, vol. 3, no. 2, pp. 202–210, 1978.
  36. A. Pla, B. Lopez, and J. Murillo, “Multi-dimensional fairness for auction-based resource allocation,” Knowledge-Based Systems, vol. 73, pp. 134–148, 2015.
  37. M. Ansarifard and M. Khadem, “Novel Dynamic Fairness-aware Auction for Enhanced Licensed Shared Access in 6G Networks,” IEEE Dataport, 2023.

Summary

We haven't generated a summary for this paper yet.