Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

JoReS-Diff: Joint Retinex and Semantic Priors in Diffusion Model for Low-light Image Enhancement (2312.12826v2)

Published 20 Dec 2023 in cs.CV

Abstract: Low-light image enhancement (LLIE) has achieved promising performance by employing conditional diffusion models. Despite the success of some conditional methods, previous methods may neglect the importance of a sufficient formulation of task-specific condition strategy, resulting in suboptimal visual outcomes. In this study, we propose JoReS-Diff, a novel approach that incorporates Retinex- and semantic-based priors as the additional pre-processing condition to regulate the generating capabilities of the diffusion model. We first leverage pre-trained decomposition network to generate the Retinex prior, which is updated with better quality by an adjustment network and integrated into a refinement network to implement Retinex-based conditional generation at both feature- and image-levels. Moreover, the semantic prior is extracted from the input image with an off-the-shelf semantic segmentation model and incorporated through semantic attention layers. By treating Retinex- and semantic-based priors as the condition, JoReS-Diff presents a unique perspective for establishing an diffusion model for LLIE and similar image enhancement tasks. Extensive experiments validate the rationality and superiority of our approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.