Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Object-aware Adaptive-Positivity Learning for Audio-Visual Question Answering (2312.12816v1)

Published 20 Dec 2023 in cs.CV

Abstract: This paper focuses on the Audio-Visual Question Answering (AVQA) task that aims to answer questions derived from untrimmed audible videos. To generate accurate answers, an AVQA model is expected to find the most informative audio-visual clues relevant to the given questions. In this paper, we propose to explicitly consider fine-grained visual objects in video frames (object-level clues) and explore the multi-modal relations(i.e., the object, audio, and question) in terms of feature interaction and model optimization. For the former, we present an end-to-end object-oriented network that adopts a question-conditioned clue discovery module to concentrate audio/visual modalities on respective keywords of the question and designs a modality-conditioned clue collection module to highlight closely associated audio segments or visual objects. For model optimization, we propose an object-aware adaptive-positivity learning strategy that selects the highly semantic-matched multi-modal pair as positivity. Specifically, we design two object-aware contrastive loss functions to identify the highly relevant question-object pairs and audio-object pairs, respectively. These selected pairs are constrained to have larger similarity values than the mismatched pairs. The positivity-selecting process is adaptive as the positivity pairs selected in each video frame may be different. These two object-aware objectives help the model understand which objects are exactly relevant to the question and which are making sounds. Extensive experiments on the MUSIC-AVQA dataset demonstrate the proposed method is effective in finding favorable audio-visual clues and also achieves new state-of-the-art question-answering performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Zhangbin Li (3 papers)
  2. Dan Guo (66 papers)
  3. Jinxing Zhou (16 papers)
  4. Jing Zhang (730 papers)
  5. Meng Wang (1063 papers)
Citations (8)