Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatically well-conditioned collocation boundary element method for transmission problems based on the Burton--Miller formulation (2312.12787v2)

Published 20 Dec 2023 in math.NA and cs.NA

Abstract: This paper proposes a collocation boundary element method based on the Burton--Miller method for solving transmission problems, which is rapidly convergent within the Krylov subspace solver framework. Our study enhances Burton--Miller-type boundary integral equations tailored for transmission problems by exploiting the Calderon formula. In cases where a single material exists in an unbounded host medium, we demonstrate the formulation of the boundary integral equation such that the underlying integral operator ${\cal A}$ is spectrally well-conditioned. Specifically, ${\cal A}$ can be designed such that ${\cal A}2$ has only a single eigenvalue accumulation point. Furthermore, we extend this to the multi-material case, proving that the square of the proposed operator has only a few eigenvalues clustering points. When the collocation method is used to discretise the proposed boundary integral equations, the good spectral properties of the integral operator are naturally inherited to the coefficient matrix $\mathsf{A}$ similarly to the Nyst\"om methods; Almost all eigenvalues of $\mathsf{A}2$ cluster at a few points in the complex plane ensuring the small condition number for $\mathsf{A}$. Through numerical examples of several benchmark problems, we illustrate that our formulation reduces the iteration number required by iterative linear solvers, even in the presence of material junction points.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. Akduman I, Kress R. Direct and Inverse Scattering Problems for Inhomogeneous Impedance Cylinders of Arbitrary Shape. Radio Science 2003; 38(3). doi:10.1029/2002RS002631
  2. doi:10.1364/AO.37.007410
  3. Pendry JB. Negative Refraction Makes a Perfect Lens. Physical Review Letters 2000; 85(18): 3966–3969. doi:10.1103/PhysRevLett.85.3966
  4. doi:10.1126/science.1125907
  5. Nédélec JC. Acoustic and Electromagnetic Equations. Springer New York, NY . 2001.
  6. Burton AJ, Miller GF. The Application of Integral Equation Methods to the Numerical Solution of Some Exterior Boundary-Value Problems. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 1971; 323(1553): 201–210. doi:10.1098/rspa.1971.0097
  7. doi:10.1137/16M1087436
  8. doi:10.1016/j.enganabound.2015.04.014
  9. Saad Y, Schultz MH. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing 1986; 7(3): 856–869. doi:10.1137/0907058
  10. Rokhlin V. Rapid Solution of Integral Equations of Classical Potential Theory. Journal of Computational Physics 1985; 60(2): 187–207. doi:10.1016/0021-9991(85)90002-6
  11. doi:10.1109/TMAG.2006.871642
  12. Artech House, Inc. . 2001.
  13. Müller C. Foundations of the Mathematical Theory of Electromagnetic Waves. Springer-Verlag Berlin Heidelberg . 1969.
  14. Christiansen SH, Nédélec JC. Des Préconditionneurs Pour La Résolution Numérique Des Équations Intégrales de Frontière de l’acoustique. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics 2000; 330(7): 617–622. doi:10.1016/S0764-4442(00)00225-1
  15. Antoine X, Boubendir Y. An Integral Preconditioner for Solving the Two-Dimensional Scattering Transmission Problem Using Integral Equations. International Journal of Computer Mathematics 2008; 85(10): 1473–1490. doi:10.1080/00207160802033335
  16. Niino K, Nishimura N. Preconditioning Based on Calderon’s Formulae for Periodic Fast Multipole Methods for Helmholtz’ Equation. Journal of Computational Physics 2012; 231(1): 66–81. doi:10.1016/j.jcp.2011.08.019
  17. Costabel M, Stephan E. A Direct Boundary Integral Equation Method for Transmission Problems. Journal of Mathematical Analysis and Applications 1985; 106(2): 367–413. doi:10.1016/0022-247X(85)90118-0
  18. Kleinman RE, Martin PA. On Single Integral Equations for the Transmission Problem of Acoustics. SIAM Journal on Applied Mathematics 1988; 48(2): 307–325. doi:10.1137/0148016
  19. Misawa R, Nishimura N. A Study on the Single Boundary Integral Equation Method for Transmission Problems for Helmholtz’ Equation in 2D Based on the Distribution of Fictitious Complex Eigenvalues (in Japanese). Transactions of Jascome 2016; 16: 73–78.
  20. doi:10.1007/s10543-014-0496-y
  21. Hiptmair R, Jerez-Hanckes C. Multiple Traces Boundary Integral Formulation for Helmholtz Transmission Problems. Advances in Computational Mathematics 2012; 37(1): 39–91. doi:10.1007/s10444-011-9194-3
  22. doi:10.1016/j.camwa.2021.11.021
  23. doi:10.1126/science.289.5485.1734
  24. doi:10.1002/jnm.1834
  25. doi:10.1002/nme.3332
  26. Sonneveld P, van Gijzen MB. IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations. SIAM Journal on Scientific Computing 2009; 31(2): 1035–1062. doi:10.1137/070685804
  27. Sleijpen GLG, van Gijzen MB. Exploiting BiCGstab(ℓℓ\ellroman_ℓ) Strategies to Induce Dimension Reduction. SIAM Journal on Scientific Computing 2010; 32(5): 2687–2709. doi:10.1137/090752341

Summary

We haven't generated a summary for this paper yet.