Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
107 tokens/sec
Gemini 2.5 Pro Premium
58 tokens/sec
GPT-5 Medium
29 tokens/sec
GPT-5 High Premium
25 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
84 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Towards Accelerating Particle-Resolved Direct Numerical Simulation with Neural Operators (2312.12412v1)

Published 19 Dec 2023 in physics.flu-dyn

Abstract: We present our ongoing work aimed at accelerating a particle-resolved direct numerical simulation model designed to study aerosol-cloud-turbulence interactions. The dynamical model consists of two main components - a set of fluid dynamics equations for air velocity, temperature, and humidity, coupled with a set of equations for particle (i.e., cloud droplet) tracing. Rather than attempting to replace the original numerical solution method in its entirety with a ML method, we consider developing a hybrid approach. We exploit the potential of neural operator learning to yield fast and accurate surrogate models and, in this study, develop such surrogates for the velocity and vorticity fields. We discuss results from numerical experiments designed to assess the performance of ML architectures under consideration as well as their suitability for capturing the behavior of relevant dynamical systems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube