Minimal massive supergravity and new theories of massive gravity (2312.12387v1)
Abstract: We present an action for minimal massive gravity (MMG) in three dimensions in terms of a dreibein and an independent spin connection. Furthermore, the construction provides an action principle for an infinite family of so-called third-way consistent generalizations of the three-dimensional Einstein field equations, including exotic massive gravity and new higher-order generalizations. It allows to systematically construct the matter couplings for these models, including the couplings to fermions, depending on the spin connection. In particular, we construct different supersymmetric extensions of MMG, and derive their second order fermionic field equations. This establishes a new class of three-dimensional supergravity theories and we discuss their limit to topological massive supergravity. Finally, we identify the landscape of (A)dS vacua of the supersymmetric models. We analyze the spectrum and the unitarity properties of these vacua. We recover the known AdS vacua of MMG which are bulk and boundary unitary.
- N. S. Deger, M. Geiller, J. Rosseel, and H. Samtleben, “Minimal massive supergravity,” Phys. Rev. Lett. 129 no. 17, (2022) 171601, arXiv:2206.00675 [hep-th].
- S. Deser, R. Jackiw, and G. ’t Hooft, “Three-dimensional Einstein gravity: dynamics of flat space,” Annals Phys. 152 (1984) 220.
- S. Deser and R. Jackiw, “Three-dimensional cosmological gravity: dynamics of constant curvature,” Annals Phys. 153 (1984) 405–416.
- A. Achucarro and P. K. Townsend, “A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories,” Phys. Lett. B180 (1986) 89.
- E. Witten, “(2+1)-dimensional gravity as an exactly soluble system,” Nucl. Phys. B 311 (1988) 46.
- S. Carlip, Quantum gravity in 2+1212+12 + 1 dimensions. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1998. http://dx.doi.org/10.1017/CBO9780511564192.
- J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity,” Commun. Math. Phys. 104 (1986) 207–226.
- S. Carlip, “Statistical mechanics and black hole entropy,” arXiv:gr-qc/9509024 [gr-qc].
- A. Strominger, “Black hole entropy from near horizon microstates,” JHEP 02 (1998) 009, arXiv:hep-th/9712251.
- D. Birmingham, I. Sachs, and S. Sen, “Entropy of three-dimensional black holes in string theory,” Phys. Lett. B 424 (1998) 275–280, arXiv:hep-th/9801019.
- M. Banados, C. Teitelboim, and J. Zanelli, “The Black hole in three-dimensional space-time,” Phys. Rev. Lett. 69 (1992) 1849–1851, arXiv:hep-th/9204099.
- S. Deser, R. Jackiw, and S. Templeton, “Three-dimensional massive gauge theories,” Phys. Rev. Lett. 48 (1982) 975–978.
- S. Deser, R. Jackiw, and S. Templeton, “Topologically massive gauge theories,” Ann. Phys. 140 (1982) 372–411.
- E. A. Bergshoeff, O. Hohm, and P. K. Townsend, “Massive gravity in three dimensions,” Phys. Rev. Lett. 102 (2009) 201301, arXiv:0901.1766 [hep-th].
- O. Hohm, A. Routh, P. K. Townsend, and B. Zhang, “On the Hamiltonian form of 3D massive gravity,” Phys.Rev. D86 (2012) 084035, arXiv:1208.0038 [hep-th].
- E. Bergshoeff, O. Hohm, W. Merbis, A. J. Routh, and P. K. Townsend, “Minimal massive 3D gravity,” Class. Quant. Grav. 31 (2014) 145008, arXiv:1404.2867 [hep-th].
- E. Bergshoeff, W. Merbis, A. J. Routh, and P. K. Townsend, “The third way to 3D gravity,” Int. J. Mod. Phys. D 24 no. 12, (2015) 1544015, arXiv:1506.05949 [gr-qc].
- N. S. Deger, “A review of third way consistent theories,” J. Phys. Conf. Ser. 2191 no. 6, (2022) 012008, arXiv:2109.04339 [hep-th].
- A. S. Arvanitakis, A. J. Routh, and P. K. Townsend, “Matter coupling in 3D ’minimal massive gravity,” Class. Quant. Grav. 31 no. 23, (2014) 235012, arXiv:1407.1264 [hep-th].
- M. Özkan, Y. Pang, and P. K. Townsend, “Exotic massive 3D gravity,” JHEP 08 (2018) 035, arXiv:1806.04179 [hep-th].
- A. S. Arvanitakis, A. Sevrin, and P. K. Townsend, “Yang-Mills as massive Chern-Simons theory: a third way to three-dimensional gauge theories,” Phys. Rev. Lett. 114 no. 18, (2015) 181603, arXiv:1501.07548 [hep-th].
- M. Broccoli, N. S. Deger, and S. Theisen, “Third way to interacting p𝑝pitalic_p-form theories,” Phys. Rev. Lett. 127 no. 9, (2021) 091603, arXiv:2103.13243 [hep-th].
- N. S. Deger and J. Rosseel, “Novel 3D supersymmetric massive Yang-Mills theory,” Phys. Rev. D 104 no. 8, (2021) L081701, arXiv:2105.13300 [hep-th].
- N. S. Deger and H. Samtleben, “A note on the third way consistent deformation of Yang-Mills theory,” arXiv:2205.15578 [hep-th].
- S. Deser and J. Kay, “Topologically massive supergravity,” Phys.Lett. B120 (1983) 97–100.
- S. Deser, “Cosmological topological supergravity,” in Quantum Theory of Gravity. Essays in honor of the 60th birthday of Bryce S. DeWitt, S. Christensen, ed., p. 374. Adam Hilger Limited, Bristol, 1984.
- E. Sezgin and Y. Tanii, “Witten-Nester energy in topologically massive gravity,” Class. Quant. Grav. 26 (2009) 235005, arXiv:0903.3779 [hep-th].
- A. Routh, “Hamiltonian form of topologically massive supergravity,” Phys. Rev. D 88 no. 2, (2013) 024022, arXiv:1301.7671 [hep-th].
- E. W. Mielke and P. Baekler, “Topological gauge model of gravity with torsion,” Phys. Lett. A 156 (1991) 399–403.
- S. L. Cacciatori, M. M. Caldarelli, A. Giacomini, D. Klemm, and D. S. Mansi, “Chern-Simons formulation of three-dimensional gravity with torsion and nonmetricity,” J. Geom. Phys. 56 (2006) 2523–2543, arXiv:hep-th/0507200.
- M. Geiller, C. Goeller, and N. Merino, “Most general theory of 3d gravity: Covariant phase space, dual diffeomorphisms, and more,” JHEP 02 (2021) 120, arXiv:2011.09873 [hep-th].
- H. R. Afshar and N. S. Deger, “Exotic massive 3D gravities from truncation,” JHEP 11 (2019) 145, arXiv:1909.06305 [hep-th].
- H. Cebeci, “Matter coupling in minimal massive 3D gravity and spinor-matter interactions in exterior algebra formalism,” Class. Quant. Grav. 39 no. 3, (2022) 035006, arXiv:2004.07476 [gr-qc].
- A. Giacomini, R. Troncoso, and S. Willison, “Three-dimensional supergravity reloaded,” Class. Quant. Grav. 24 (2007) 2845–2860, arXiv:hep-th/0610077.
- G. Gibbons, C. Pope, and E. Sezgin, “The general supersymmetric solution of topologically massive supergravity,” Class. Quant. Grav. 25 (2008) 205005, arXiv:0807.2613 [hep-th].
- S. Deser and X. Xiang, “Canonical formulations of full nonlinear topologically massive gravity,” Phys. Lett. B 263 (1991) 39–43.
- S. Carlip, “Inducing Liouville theory from topologically massive gravity,” Nucl. Phys. B 362 (1991) 111–124.
- E. A. Bergshoeff, W. Merbis, and P. K. Townsend, “On asymptotic charges in 3D gravity,” Class. Quant. Grav. 37 no. 3, (2020) 035003, arXiv:1909.11743 [hep-th].
- A. Bagchi, S. Detournay, and D. Grumiller, “Flat-space chiral gravity,” Phys. Rev. Lett. 109 (2012) 151301, arXiv:1208.1658 [hep-th].
- A. S. Arvanitakis and P. K. Townsend, “Minimal massive 3D gravity unitarity redux,” Class. Quant. Grav. 32 no. 8, (2015) 085003, arXiv:1411.1970 [hep-th].
- D. Grumiller and N. Johansson, “Instability in cosmological topologically massive gravity at the chiral point,” JHEP 07 (2008) 134, arXiv:0805.2610 [hep-th].
- D. Grumiller, R. Jackiw, and N. Johansson, “Canonical analysis of cosmological topologically massive gravity at the chiral point,” arXiv:0806.4185 [hep-th].
- D. Grumiller and N. Johansson, “Consistent boundary conditions for cosmological topologically massive gravity at the chiral point,” Int. J. Mod. Phys. D 17 (2009) 2367–2372, arXiv:0808.2575 [hep-th].
- A. Maloney, W. Song, and A. Strominger, “Chiral gravity, log gravity and extremal CFT,” Phys. Rev. D 81 (2010) 064007, arXiv:0903.4573 [hep-th].
- K. Skenderis, M. Taylor, and B. C. van Rees, “Topologically massive gravity and the AdS/CFT correspondence,” JHEP 09 (2009) 045, arXiv:0906.4926 [hep-th].
- D. Grumiller, W. Riedler, J. Rosseel, and T. Zojer, “Holographic applications of logarithmic conformal field theories,” J. Phys. A 46 (2013) 494002, arXiv:1302.0280 [hep-th].
- N. S. Deger, G. Moutsopoulos, and J. Rosseel, “Critical 𝒩𝒩\mathcal{N}caligraphic_N = (1, 1) general massive supergravity,” JHEP 04 (2018) 105, arXiv:1802.03957 [hep-th].
- D. Roest and H. Samtleben, “Twin supergravities,” Class. Quant. Grav. 26 (2009) 155001, arXiv:0904.1344 [hep-th].
- D. Chernyavsky, N. S. Deger, and D. Sorokin, “Spontaneously broken 3d3𝑑3d3 italic_d Hietarinta/Maxwell Chern–Simons theory and minimal massive gravity,” Eur. Phys. J. C 80 no. 6, (2020) 556, arXiv:2002.07592 [hep-th].