Is natural inflation in agreement with CMB data? (2312.12286v3)
Abstract: Natural inflation is a well-motivated model for the early universe in which an inflaton potential of the pseudo-Nambu-Goldstone form, $V(\phi) = \Lambda4[1 + \cos{(\phi/f)}]$, can naturally drive a cosmic accelerated epoch. This paper investigates the observational viability of the minimally and non-minimally coupled natural inflation scenarios in light of current Cosmic Microwave Background (CMB) observations. We find that a small and negative coupling of the field with gravity can alleviate the well-known observational discrepancies of the minimally coupled model. We perform a Monte Carlo Markov Chain analysis of the Planck 2018 CMB and BICEP/Keck Array B-mode polarization data to estimate how strong the coupling $\xi$ should be to achieve concordance with data. We also briefly discuss the impact of these results on the physical interpretation of the natural inflation scenario.
- A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).
- A. H. Guth, Phys. Rev. D 23, 347 (1981).
- A. D. Linde, Phys. Lett. B 108, 389 (1982).
- Y. Akrami et al. (Planck), Astron. Astrophys. 641, A10 (2020), arXiv:1807.06211 [astro-ph.CO] .
- N. Aghanim et al. (Planck), Astron. Astrophys. 641, A1 (2020a), arXiv:1807.06205 [astro-ph.CO] .
- N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020b), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
- T. Futamase and K.-i. Maeda, Phys. Rev. D 39, 399 (1989).
- R. Fakir and W. G. Unruh, Phys. Rev. D 41, 1783 (1990).
- V. Faraoni, Phys. Rev. D 53, 6813 (1996), arXiv:astro-ph/9602111 .
- K. Nozari and S. D. Sadatian, Mod. Phys. Lett. A 23, 2933 (2008), arXiv:0710.0058 [astro-ph] .
- F. Bauer and D. A. Demir, Phys. Lett. B 665, 222 (2008), arXiv:0803.2664 [hep-ph] .
- M. P. Hertzberg, JHEP 11, 023 (2010), arXiv:1002.2995 [hep-ph] .
- T. Tenkanen, JCAP 12, 001 (2017), arXiv:1710.02758 [astro-ph.CO] .
- F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659, 703 (2008), arXiv:0710.3755 [hep-th] .
- D. Barkats et al. (BICEP1), Astrophys. J. 783, 67 (2014), arXiv:1310.1422 [astro-ph.CO] .
- P. A. R. Ade et al. (BICEP2, Keck Array), Phys. Rev. Lett. 121, 221301 (2018), arXiv:1810.05216 [astro-ph.CO] .
- P. A. R. Ade et al. (BICEP, Keck), Phys. Rev. Lett. 127, 151301 (2021), arXiv:2110.00483 [astro-ph.CO] .
- Y. Reyimuaji and X. Zhang, JCAP 03, 059 (2021), arXiv:2012.14248 [astro-ph.CO] .
- N. Bostan, JCAP 02, 063 (2023), arXiv:2209.02434 [astro-ph.CO] .
- J. E. Kim, Phys. Rept. 150, 1 (1987).
- P. Svrcek and E. Witten, JHEP 06, 051 (2006), arXiv:hep-th/0605206 .
- R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977).
- F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
- S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
- J. E. Kim, Phys. Rev. Lett. 43, 103 (1979).
- A. R. Zhitnitsky, Sov. J. Nucl. Phys. 31, 260 (1980).
- N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics (Cambridge Univ. Press, Cambridge, UK, 1984).
- R. Kallosh and A. Linde, JCAP 1307, 002 (2013), arXiv:1306.5220 [hep-th] .
- J. Lesgourgues, (2011), arXiv:1104.2932 [astro-ph.IM] .
- T. Brinckmann and J. Lesgourgues, Phys. Dark Univ. 24, 100260 (2019), arXiv:1804.07261 [astro-ph.CO] .
- A. R. Liddle, Mon. Not. Roy. Astron. Soc. 377, L74 (2007), arXiv:astro-ph/0701113 .
- P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A20 (2016), arXiv:1502.02114 [astro-ph.CO] .
- D. J. E. Marsh, Phys. Rept. 643, 1 (2016), arXiv:1510.07633 [astro-ph.CO] .