Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Solvable entanglement dynamics in quantum circuits with generalized space-time duality (2312.12239v2)

Published 19 Dec 2023 in quant-ph, cond-mat.stat-mech, and cond-mat.str-el

Abstract: We study the non-equilibrium dynamics of kicked Ising models in $1+1$ dimensions which have interactions alternating between odd and even bonds in time. These models can be understood as quantum circuits tiling space-time with the generalized space-time dual properties of tri-unitarity (three "arrows of time") at the global level, and also second-level dual-unitarity at the local level, which constrains the behavior of pairs of local gates underlying the circuit under a space-time rotation. We identify a broad class of initial product states wherein the effect of the environment on a small subsystem can be exactly represented by influence matrices with simple Markovian structures, resulting in the subsystem's full dynamics being efficiently computable. We further find additional conditions under which the dynamics of entanglement can be solved for all times, yielding rich phenomenology ranging from linear growth at half the maximal speed allowed by locality, followed by saturation to maximum entropy (i.e., thermalization to infinite temperature); to entanglement growth with saturation to extensive but sub-maximal entropy. Intriguingly, for certain parameter regimes, we find a nonchaotic class of dynamics which is neither integrable nor Clifford, exemplified by nonzero operator entanglement growth but with a spectral form factor which exhibits large, apparently time-quasiperiodic revivals.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. R. Nandkishore and D. A. Huse, Annual Review of Condensed Matter Physics 6, 15–38 (2015).
  2. P. Hayden and J. Preskill, Journal of High Energy Physics 2007, 120–120 (2007).
  3. S. H. Shenker and D. Stanford, Journal of High Energy Physics 2014, 67 (2014).
  4. D. A. Roberts and B. Yoshida, Journal of High Energy Physics 2017, 121 (2017).
  5. M. Mezei and D. Stanford, Journal of High Energy Physics 2017, 65 (2017).
  6. G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
  7. V. Alba and P. Calabrese, Proceedings of the National Academy of Sciences 114, 7947 (2017).
  8. F. H. L. Essler and M. Fagotti, Journal of Statistical Mechanics: Theory and Experiment 2016, 064002 (2016).
  9. P. Calabrese, SciPost Physics Lecture Notes , 20 (2020).
  10. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
  11. S. Gopalakrishnan and A. Lamacraft, Phys. Rev. B 100, 064309 (2019).
  12. P. W. Claeys and A. Lamacraft, Phys. Rev. Lett. 126, 100603 (2021).
  13. X.-H. Yu, Z. Wang,  and P. Kos, “Hierarchical generalization of dual unitarity,”  (2023), arXiv:2307.03138 [quant-ph] .
  14. W. W. Ho and S. Choi, Phys. Rev. Lett. 128, 060601 (2022).
  15. M. Ippoliti and W. W. Ho, Quantum 6, 886 (2022).
  16. M. Ippoliti and W. W. Ho, PRX Quantum 4, 030322 (2023).
  17. M. Srednicki, Physical Review E 50, 888 (1994).
  18. M. J. Gullans and D. A. Huse, Phys. Rev. Lett. 125, 070606 (2020).
  19. B. Bertini, C. D. Fazio, J. P. Garrahan,  and K. Klobas, “Exact quench dynamics of the floquet quantum east model at the deterministic point,”  (2023), arXiv:2310.06128 [cond-mat.stat-mech] .
  20. See Supplemental material online for details of tensor network notation and manipulation, as well as proofs of statements presented in the main text.
  21. M. B. Hastings and R. Mahajan, Phys. Rev. A 91, 032306 (2015).
  22. T.-C. Lu and T. Grover, PRX Quantum 2, 040319 (2021).
  23. T. Zhou and A. W. Harrow, Phys. Rev. B 106, L201104 (2022).
  24. M. L. Mehta, Random Matrices and the Statistical Theory of Spectra, 2nd ed. (Academic, New York, 1991).
  25. D. Gottesman, arXiv:quant-ph/9807006  (1998).
  26. J. Liu, Phys. Rev. D 98, 086026 (2018).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)