Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reassessing the advantage of indefinite causal orders for quantum metrology (2312.12172v3)

Published 19 Dec 2023 in quant-ph

Abstract: The quantum switch, the canonical example of a process with indefinite causal order, has been claimed to provide various advantages over processes with definite causal orders for some particular tasks in the field of quantum metrology. In this work, we argue that some of these advantages in fact do not hold if a fairer comparison is made. To this end, we consider a framework that allows for a proper comparison between the performance, quantified by the quantum Fisher information, of different classes of indefinite causal order processes and that of causal strategies on a given metrological task. More generally, by considering the recently proposed classes of circuits with classical or quantum control of the causal order, we come up with different examples where processes with indefinite causal order offer (or not) an advantage over processes with definite causal order, qualifying the interest of indefinite causal order regarding quantum metrology. As it turns out, for a range of examples, the class of quantum circuits with quantum control of causal order, which are known to be physically realizable, is shown to provide a strict advantage over causally ordered quantum circuits as well as over the class of quantum circuits with causal superposition. Thus, the consideration of this class provides new evidence that indefinite causal order strategies can strictly outperform definite causal order strategies in quantum metrology.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. O. Oreshkov, F. Costa, and Č. Brukner, Quantum correlations with no causal order, Nat. Commun. 3, 1092 (2012), arXiv:1105.4464 [quant-ph] .
  2. L. Hardy, Probability theories with dynamic causal structure: a new framework for quantum gravity, arXiv:gr-qc/0509120 (2005).
  3. G. Chiribella, Perfect discrimination of no-signalling channels via quantum superposition of causal structures, Phys. Rev. A 86, 040301(R) (2012), arXiv:1109.5154 [quant-ph] .
  4. D. Ebler, S. Salek, and G. Chiribella, Enhanced communication with the assistance of indefinite causal order, Phys. Rev. Lett. 120, 120502 (2018), arXiv:1711.10165 [quant-ph] .
  5. A. Feix, M. Araújo, and Č. Brukner, Quantum superposition of the order of parties as a communication resource, Phys. Rev. A 92, 052326 (2015), arXiv:1508.07840 [quant-ph] .
  6. C. Mukhopadhyay, M. K. Gupta, and A. K. Pati, Superposition of causal order as a metrological resource for quantum thermometry, arXiv:1812.07508 [quant-ph] (2018).
  7. M. Frey, Indefinite causal order aids quantum depolarizing channel identification, Quantum Inf. Process. 18, 96 (2019).
  8. X. Zhao, Y. Yang, and G. Chiribella, Quantum metrology with indefinite causal order, Phys. Rev. Lett. 124, 190503 (2020), arXiv:1912.02449 [quant-ph] .
  9. M. Frey, Quantum network probing with indefinite routing, Quantum Inf. Process. 20, 13 (2021).
  10. A. Altherr and Y. Yang, Quantum metrology for non-Markovian processes, Phys. Rev. Lett. 127, 060501 (2021), arXiv:2103.02619 [quant-ph] .
  11. F. Chapeau-Blondeau, Noisy quantum metrology with the assistance of indefinite causal order, Phys. Rev. A 103, 032615 (2021a), arXiv:2104.06284 [quant-ph] .
  12. F. Chapeau-Blondeau, Quantum parameter estimation on coherently superposed noisy channels, Phys. Rev. A 104, 032214 (2021b), arXiv:2110.06715 [quant-ph] .
  13. F. Chapeau-Blondeau, Indefinite causal order for quantum metrology with quantum thermal noise, Phys. Lett. A 447, 128300 (2022), arXiv:2211.01684 [quant-ph] .
  14. G. Chiribella and X. Zhao, Heisenberg-limited metrology with coherent control on the probes’ configuration, arXiv:2206.03052 [quant-ph] (2022).
  15. A. Z. Goldberg, K. Heshami, and L. L. Sánchez-Soto, Evading noise in multiparameter quantum metrology with indefinite causal order, Phys. Rev. Research 5, 033198 (2023), arXiv:2309.07220 [quant-ph] .
  16. F. Chapeau-Blondeau, Indefinite causal order for quantum phase estimation with pauli noise, Fluct. Noise Lett. 22, 2350036 (2023), arXiv:2312.02832 [quant-ph] .
  17. S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states, Phys. Rev. Lett. 72, 3439 (1994).
  18. G. Rubino, G. Manzano, and Č. Brukner, Quantum superposition of thermodynamic evolutions with opposing time’s arrows, Commun. Phys. 4, 251 (2021a), arXiv:2008.02818 [quant-ph] .
  19. C. W. Helstrom, Minimum mean-squared error of estimates in quantum statistics, Phys. Lett. A 25, 101 (1967).
  20. C. W. Helstrom, Quantum detection and estimation theory, J. Stat. Phys. 1, 231 (1969).
  21. M. G. Paris, Quantum estimation for quantum technology, Int. J. Quantum Inf. 7, 125 (2009), arXiv:0804.2981 [quant-ph] .
  22. A. Fujiwara and H. Imai, A fibre bundle over manifolds of quantum channels and its application to quantum statistics, J. Phys. A: Math. Theor. 41, 255304 (2008).
  23. Z. Huang, C. Macchiavello, and L. Maccone, Usefulness of entanglement-assisted quantum metrology, Phys. Rev. A 94, 012101 (2016), arXiv:1603.03993 [quant-ph] .
  24. A. Fujiwara, Quantum channel identification problem, Phys. Rev. A 63, 042304 (2001).
  25. A. Fujiwara, Estimation of a generalized amplitude-damping channel, Phys. Rev. A 70, 012317 (2004).
  26. M.-D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10, 285 (1975).
  27. G. Chiribella, G. M. D’Ariano, and P. Perinotti, Quantum circuit architecture, Phys. Rev. Lett. 101, 060401 (2008), arXiv:0712.1325 [quant-ph] .
  28. G. Chiribella, G. M. D’Ariano, and P. Perinotti, Theoretical framework for quantum networks, Phys. Rev. A 80, 022339 (2009), arXiv:0904.4483 [quant-ph] .
  29. M. Araújo, F. Costa, and Č. Brukner, Computational advantage from quantum-controlled ordering of gates, Phys. Rev. Lett. 113, 250402 (2014), arXiv:1401.8127 [quant-ph] .
  30. G. Chiribella and D. Ebler, Optimal quantum networks and one-shot entropies, New J. Phys. 18, 093053 (2016), arXiv:1606.02394 [quant-ph] .
  31. K. Fan, Minimax theorems, Proc. Natl. Acad. Sci. USA 39, 42 (1953).
  32. G. Gutoski and J. Watrous, Toward a general theory of quantum games, in Proceedings of the 39th Annual ACM Symposium on Theory of Computing, STOC ’07 (2007) pp. 565–574, arXiv:quant-ph/0611234 .
  33. J. Wechs, A. A. Abbott, and C. Branciard, On the definition and characterisation of multipartite causal (non)separability, New J. Phys. 21, 013027 (2019), arXiv:1807.10557 [quant-ph] .
  34. T. Purves and A. J. Short, Quantum theory cannot violate a causal inequality, Phys. Rev. Lett. 127, 110402 (2021), arXiv:2101.09107 [quant-ph] .
  35. A. Fujiwara and H. Imai, Quantum parameter estimation of a generalized Pauli channel, J. Phys. A: Math. Gen. 36, 8093 (2003).
  36. N. Johnston, A. Cosentino, and V. Russo, QETLAB: QETLAB v0.9, Zenodo (2016).
  37. A. A. Abbott, M. Mhalla, and P. Pocreau, Quantum query complexity of Boolean functions under indefinite causal order, arXiv:2307.10285 [quant-ph] (2023).
  38. L. P. Hughston, R. Jozsa, and W. K. Wootters, A complete classification of quantum ensembles having a given density matrix, Phys. Lett. A 183, 14 (1993).
  39. J. Watrous, The theory of quantum information (Cambridge university press, 2018).
  40. R. A. Horn and F. Zhang, Basic properties of the Schur complement, in The Schur Complement and Its Applications, edited by F. Zhang (Springer US, 2005).
Citations (2)

Summary

We haven't generated a summary for this paper yet.