Resource-efficient Generative Mobile Edge Networks in 6G Era: Fundamentals, Framework and Case Study (2312.12063v1)
Abstract: As the next-generation wireless communication system, Sixth-Generation (6G) technologies are emerging, enabling various mobile edge networks that can revolutionize wireless communication and connectivity. By integrating Generative Artificial Intelligence (GAI) with mobile edge networks, generative mobile edge networks possess immense potential to enhance the intelligence and efficiency of wireless communication networks. In this article, we propose the concept of generative mobile edge networks and overview widely adopted GAI technologies and their applications in mobile edge networks. We then discuss the potential challenges faced by generative mobile edge networks in resource-constrained scenarios. To address these challenges, we develop a universal resource-efficient generative incentive mechanism framework, in which we design resource-efficient methods for network overhead reduction, formulate appropriate incentive mechanisms for the resource allocation problem, and utilize Generative Diffusion Models (GDMs) to find the optimal incentive mechanism solutions. Furthermore, we conduct a case study on resource-constrained mobile edge networks, employing model partition for efficient AI task offloading and proposing a GDM-based Stackelberg model to motivate edge devices to contribute computing resources for mobile edge intelligence. Finally, we propose several open directions that could contribute to the future popularity of generative mobile edge networks.
- W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards 6G: A comprehensive survey,” IEEE Open Journal of the Communications Society, vol. 2, pp. 334–366, 2021.
- M. Z. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang, “6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions,” IEEE Open Journal of the Communications Society, vol. 1, pp. 957–975, 2020.
- J. Kang, J. He, H. Du, Z. Xiong, Z. Yang, X. Huang, and S. Xie, “Adversarial attacks and defenses for semantic communication in vehicular metaverses,” arXiv preprint arXiv:2306.03528, 2023.
- H. Du, R. Zhang, Y. Liu, J. Wang, Y. Lin, Z. Li, D. Niyato, J. Kang, Z. Xiong, S. Cui, et al., “Beyond deep reinforcement learning: A tutorial on generative diffusion models in network optimization,” arXiv preprint arXiv:2308.05384, 2023.
- M. Xu, H. Du, D. Niyato, J. Kang, Z. Xiong, S. Mao, Z. Han, A. Jamalipour, D. I. Kim, V. Leung, et al., “Unleashing the power of edge-cloud generative ai in mobile networks: A survey of aigc services,” arXiv preprint arXiv:2303.16129, 2023.
- T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved quality, stability, and variation,” in International Conference on Learning Representations, 2018.
- Y. Lin, Z. Gao, H. Du, D. Niyato, J. Kang, A. Jamalipour, and X. S. Shen, “A unified framework for integrating semantic communication and ai-generated content in metaverse,” arXiv preprint arXiv:2305.11911, 2023.
- J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020.
- G. Harshvardhan, M. K. Gourisaria, M. Pandey, and S. S. Rautaray, “A comprehensive survey and analysis of generative models in machine learning,” Computer Science Review, vol. 38, p. 100285, 2020.
- H. Du, Z. Li, D. Niyato, J. Kang, Z. Xiong, D. I. Kim, et al., “Enabling ai-generated content (aigc) services in wireless edge networks,” arXiv preprint arXiv:2301.03220, 2023.
- J. Wen, J. Nie, J. Kang, D. Niyato, H. Du, Y. Zhang, and M. Guizani, “From generative ai to generative internet of things: Fundamentals, framework, and outlooks,” arXiv preprint arXiv:2310.18382, 2023.
- R. Yu and P. Li, “Toward resource-efficient federated learning in mobile edge computing,” IEEE Network, vol. 35, no. 1, pp. 148–155, 2021.
- Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence: Paving the last mile of artificial intelligence with edge computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762, 2019.
- J. Zhang, J. Nie, J. Wen, J. Kang, M. Xu, X. Luo, and D. Niyato, “Learning-based incentive mechanism for task freshness-aware vehicular twin migration,” in 2023 IEEE 43rd International Conference on Distributed Computing Systems Workshops (ICDCSW), pp. 103–108, IEEE, 2023.
- K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Transformer in transformer,” Advances in Neural Information Processing Systems, vol. 34, pp. 15908–15919, 2021.
- Bingkun Lai (3 papers)
- Jinbo Wen (27 papers)
- Jiawen Kang (204 papers)
- Hongyang Du (154 papers)
- Jiangtian Nie (22 papers)
- Changyan Yi (18 papers)
- Dong In Kim (168 papers)
- Shengli Xie (36 papers)