Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 228 tok/s Pro
2000 character limit reached

Leveraging the Urysohn Lemma of Topology for an Enhanced Binary Classifier (2312.11948v1)

Published 19 Dec 2023 in physics.data-an and stat.ML

Abstract: In this article we offer a comprehensive analysis of the Urysohn's classifier in a binary classification context. It utilizes Urysohn's Lemma of Topology to construct separating functions, providing rigorous and adaptable solutions. Numerical experiments demonstrated exceptional performance, with scores ranging from 95% to 100%. Notably, the Urysohn's classifier outperformed CatBoost and KNN in various scenarios. Despite sensitivity to the p-metric parameter, it proved robust and adaptable. The Urysohn's classifier's mathematical rigor and adaptability make it promising for binary classification, with applications in medical diagnosis, fraud detection and cyber security. Future research includes parameter optimization and combining the Urysohn's classifier with other techniques. It offers an elegant and principled approach to classification, ensuring integrity and valuable data insights.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)