Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

A Quantum Federated Learning Framework for Classical Clients (2312.11672v1)

Published 18 Dec 2023 in quant-ph

Abstract: Quantum Federated Learning (QFL) enables collaborative training of a Quantum Machine Learning (QML) model among multiple clients possessing quantum computing capabilities, without the need to share their respective local data. However, the limited availability of quantum computing resources poses a challenge for each client to acquire quantum computing capabilities. This raises a natural question: Can quantum computing capabilities be deployed on the server instead? In this paper, we propose a QFL framework specifically designed for classical clients, referred to as CC-QFL, in response to this question. In each iteration, the collaborative training of the QML model is assisted by the shadow tomography technique, eliminating the need for quantum computing capabilities of clients. Specifically, the server constructs a classical representation of the QML model and transmits it to the clients. The clients encode their local data onto observables and use this classical representation to calculate local gradients. These local gradients are then utilized to update the parameters of the QML model. We evaluate the effectiveness of our framework through extensive numerical simulations using handwritten digit images from the MNIST dataset. Our framework provides valuable insights into QFL, particularly in scenarios where quantum computing resources are scarce.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. K. Simonyan and A. Zisserman, arXiv preprint arXiv:1409.1556  (2014).
  2. A. W. Harrow and A. Montanaro, Nature 549, 203 (2017).
  3. P. W. Shor, SIAM review 41, 303 (1999).
  4. L. K. Grover, Physical review letters 79, 325 (1997).
  5. V. Dunjko and H. J. Briegel, Reports on Progress in Physics 81, 074001 (2018).
  6. H. Fan, Science China Physics, Mechanics & Astronomy 64, 100332 (2021).
  7. F. G. Brandao and K. M. Svore, in 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) (IEEE, 2017) pp. 415–426.
  8. E. Farhi and H. Neven, arXiv preprint arXiv:1802.06002  (2018).
  9. W. Li and D.-L. Deng, Science China Physics, Mechanics & Astronomy 65, 220301 (2022).
  10. D.-L. Deng, Science China Physics, Mechanics & Astronomy 64, 100331 (2021).
  11. K. Nakaji and N. Yamamoto, Scientific reports 11, 19649 (2021).
  12. O. Lockwood and M. Si, in Proceedings of the AAAI conference on artificial intelligence and interactive digital entertainment, Vol. 16 (2020) pp. 245–251.
  13. Q. Xia and Q. Li, in 2021 IEEE Global Communications Conference (GLOBECOM) (IEEE, 2021) pp. 1–6.
  14. M. Chehimi and W. Saad, in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2022) pp. 8617–8621.
  15. H. Zhao, arXiv preprint arXiv:2209.00768  (2022).
  16. Y.-B. Sheng and L. Zhou, Science Bulletin 62, 1025 (2017).
  17. D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980  (2014).
  18. A. Maćkiewicz and W. Ratajczak, Computers & Geosciences 19, 303 (1993).
  19. C. Gentry, in Proceedings of the forty-first annual ACM symposium on Theory of computing (2009) pp. 169–178.
  20. C. Dwork, in International conference on theory and applications of models of computation (Springer, 2008) pp. 1–19.
  21. D. Gottesman, Stabilizer codes and quantum error correction (California Institute of Technology, 1997).
Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com