Pauli Spectrum and Non-stabilizerness of Typical Quantum Many-Body States (2312.11631v2)
Abstract: An important question of quantum information is to characterize genuinely quantum (beyond-Clifford) resources necessary for universal quantum computing. Here, we use the Pauli spectrum to quantify how magic, beyond Clifford, typical many-qubit states are. We first present a phenomenological picture of the Pauli spectrum based on quantum typicality and then confirm it for Haar random states. We then introduce filtered stabilizer entropy, a magic measure that can resolve the difference between typical and atypical states. We proceed with the numerical study of the Pauli spectrum of states created by random circuits as well as for eigenstates of chaotic Hamiltonians. We find that in both cases the Pauli spectrum approaches the one of Haar random states, up to exponentially suppressed tails. Our results underscore differences between typical and atypical states from the point of view of quantum information.
- S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).
- A. Kitaev, Ann. Phys. 303, 2 (2003).
- D. Gottesman and I. L. Chuang, Nature 402, 390 (1999).
- S. Bravyi, G. Smith, and J. A. Smolin, Phys. Rev. X 6, 021043 (2016).
- E. Chitambar and G. Gour, Rev. Mod. Phys. 91, 025001 (2019).
- Z.-W. Liu and A. Winter, PRX Quantum 3, 020333 (2022).
- D. Gottesman, Phys. Rev. A 57, 127 (1998).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
- B. Eastin and E. Knill, Phys. Rev. Lett. 102, 110502 (2009).
- T. Zhou and A. Nahum, Phys. Rev. B 99, 174205 (2019).
- T. Zhou and A. Nahum, Phys. Rev. X 10, 031066 (2020).
- F. Fritzsch and T. Prosen, Phys. Rev. E 103, 062133 (2021).
- P. W. Claeys and A. Lamacraft, Phys. Rev. Lett. 126, 100603 (2021).
- Y. Li, X. Chen, and M. P. A. Fisher, Phys. Rev. B 100, 134306 (2019).
- D. Gottesman, arXiv:9705052 (1997).
- S. Aaronson and D. Gottesman, Phys. Rev. A 70, 052328 (2004).
- J. Jiang and X. Wang, Phys. Rev. Appl. 19, 034052 (2023).
- L. Leone, S. F. E. Oliviero, and A. Hamma, (2023a), arXiv:2305.15398 [quant-ph] .
- H. Qassim, H. Pashayan, and D. Gosset, Quantum 5, 606 (2021).
- L. Leone, S. F. E. Oliviero, and A. Hamma, Phys. Rev. Lett. 128, 050402 (2022).
- T. Haug, S. Lee, and M. S. Kim, (2023), arxiv:2305.19152 .
- X. Turkeshi, M. Schirò, and P. Sierant, Phys. Rev. A 108, 042408 (2023).
- P. S. Tarabunga and C. Castelnovo, Magic in generalized rokhsar-kivelson wavefunctions (2023), arXiv:2311.08463 [quant-ph] .
- T. Haug and L. Piroli, Phys. Rev. B 107, 035148 (2023a).
- T. Haug and L. Piroli, Quantum 7, 1092 (2023b).
- G. Lami and M. Collura, Phys. Rev. Lett. 131, 180401 (2023).
- J. Chen, Y. Yan, and Y. Zhou, (2023), arXiv:2308.01886 [quant-ph] .
- S. F. Oliviero, L. Leone, and A. Hamma, Physics Letters A 418, 127721 (2021).
- S. F. E. Oliviero, L. Leone, and A. Hamma, Phys. Rev. A 106, 042426 (2022b).
- P. Calabrese and J. Cardy, J. Stat. Mech. 2004, P06002 (2004).
- P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008).
- N. Laflorencie, Phys. Rep. 646, 1 (2016).
- P. Reimann, Phys. Rev. Lett. 99, 160404 (2007).
- C. Bartsch and J. Gemmer, Phys. Rev. Lett. 102, 110403 (2009).
- Either a stabilizer state has d𝑑ditalic_d elements +1, or it has d/2𝑑2d/2italic_d / 2 elements +1 and d/2𝑑2d/2italic_d / 2 elements -1.
- D. J. Luitz, F. Alet, and N. Laflorencie, Phys. Rev. B 89, 165106 (2014a).
- D. J. Luitz, F. Alet, and N. Laflorencie, Phys. Rev. Lett. 112, 057203 (2014b).
- P. Sierant and X. Turkeshi, Phys. Rev. Lett. 128, 130605 (2022).
- J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
- M. Srednicki, Phys. Rev. E 50, 888 (1994).
- M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
- L. Foini and J. Kurchan, Phys. Rev. Lett. 123, 260601 (2019a).
- L. Foini and J. Kurchan, Phys. Rev. E 99, 042139 (2019b).
- A. Dymarsky and H. Liu, Phys. Rev. E 99, 010102 (2019).
- S. Pappalardi, L. Foini, and J. Kurchan, Phys. Rev. Lett. 129, 170603 (2022).
- S. Pappalardi, F. Fritzsch, and T. Prosen, (2023a), arXiv:2303.00713 [cond-mat.stat-mech] .
- S. Pappalardi, L. Foini, and J. Kurchan, (2023b), arXiv:2304.10948 [cond-mat.stat-mech] .
- A. Dymarsky, Phys. Rev. Lett. 128, 190601 (2022).
- F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki, Comm. Math. Phys. 346, 397 (2016).
- D. A. Roberts and B. Yoshida, J. High Energy Phys. 2017 (4).
- M. Ippoliti and W. W. Ho, Quantum 6, 886 (2022).
- M. Ippoliti and W. W. Ho, PRX Quantum 4, 030322 (2023).
- M. Fava, J. Kurchan, and S. Pappalardi, (2023), arXiv:2308.06200 [quant-ph] .
- D. J. Luitz and Y. Bar Lev, Phys. Rev. Lett. 117, 170404 (2016).
- D. J. Luitz, Phys. Rev. B 93, 134201 (2016).
- M. Brenes, J. Goold, and M. Rigol, Phys. Rev. B 102, 075127 (2020b).
- R. Mondaini and M. Rigol, Phys. Rev. E 96, 012157 (2017).
- See the supplementary material. (2023).
- N. Macé, F. Alet, and N. Laflorencie, Phys. Rev. Lett. 123, 180601 (2019).
- A. Bäcker, M. Haque, and I. M. Khaymovich, Phys. Rev. E 100, 032117 (2019).
- M. L. Mehta, Random Matrices, 3rd ed. (Academic Press, New York, 2004).
- F. Haake, Quantum Signatures of Chaos (Springer, Berlin, 2010).
- X. Chapuisat and C. Iung, Phys. Rev. A 45, 6217 (1992).
- A. Klimyk and N. Y. Vilenkin, in Representation Theory and Noncommutative Harmonic Analysis II: Homogeneous Spaces, Representations and Special Functions (Springer, 1995) pp. 137–259.
- The identity \sum@\slimits@P∈𝒫N⟨Ψ|P|Ψ⟩2/d=1\sum@subscript\slimits@𝑃subscript𝒫𝑁superscriptquantum-operator-productΨ𝑃Ψ2𝑑1\sum@\slimits@_{P\in\mathcal{P}_{N}}\langle\Psi|P|\Psi\rangle^{2}/d=1start_POSTSUBSCRIPT italic_P ∈ caligraphic_P start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⟨ roman_Ψ | italic_P | roman_Ψ ⟩ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT / italic_d = 1 implies that \sum@\slimits@P∈𝒫N∖Iρ(P)=1\sum@subscript\slimits@𝑃subscript𝒫𝑁𝐼𝜌𝑃1\sum@\slimits@_{P\in\mathcal{P}_{N}\setminus I}\rho(P)=1start_POSTSUBSCRIPT italic_P ∈ caligraphic_P start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT ∖ italic_I end_POSTSUBSCRIPT italic_ρ ( italic_P ) = 1.
- W. K. Hastings, Biometrika 57, 97 (1970).
- J. Haferkamp, Quantum 6, 795 (2022).
- A. P. Luca D’Alessio, Yariv Kafri and M. Rigol, Adv. Phys. 65, 239 (2016).
- H. Kim and D. A. Huse, Phys. Rev. Lett. 111, 127205 (2013).
- P. Sierant, M. Lewenstein, and J. Zakrzewski, Phys. Rev. Lett. 125, 156601 (2020).
- I. M. Khaymovich, M. Haque, and P. A. McClarty, Phys. Rev. Lett. 122, 070601 (2019).
- I. Ulčakar and L. Vidmar, Phys. Rev. E 106, 034118 (2022).
- W. Beugeling, R. Moessner, and M. Haque, Phys. Rev. E 89, 042112 (2014).
- T. N. Ikeda, Y. Watanabe, and M. Ueda, Phys. Rev. E 87, 012125 (2013).
- A. Dymarsky, N. Lashkari, and H. Liu, Phys. Rev. E 97, 012140 (2018).
- M. Mierzejewski and L. Vidmar, Phys. Rev. Lett. 124, 040603 (2020).
- J. Preskill, Quantum 2, 79 (2018).
- D. Gross, J. Math. Phys. 47, 122107 (2006a).
- D. Gross, Appl. Phys. B 86, 367–370 (2006b).
- M. Howard and E. Campbell, Phys. Rev. Lett. 118, 090501 (2017).
- C. D. White, C. Cao, and B. Swingle, Phys. Rev. B 103, 075145 (2021).
- C. D. White and J. H. Wilson, (2020), arXiv:2011.13937 .
- P. S. Tarabunga, (2023), arXiv:2309.00676 [quant-ph] .
- M. Bejan, C. McLauchlan, and B. Béri, (2023), arXiv:2312.00132 [quant-ph] .
- X. Turkeshi and P. Sierant, (2023), arXiv:2308.06321 [quant-ph] .
- B. Collins and P. Śniady, Comm. Math. Phys. 264, 773 (2006).
- D. Gross, S. Nezami, and M. Walter, Commun. Math. Phys. 385, 1325 (2021).
- Computing std(ζq)=ζq2¯−ζq¯2stdsubscript𝜁𝑞¯superscriptsubscript𝜁𝑞2superscript¯subscript𝜁𝑞2\mathrm{std}(\zeta_{q})=\sqrt{\overline{\zeta_{q}^{2}}-\overline{\zeta_{q}}^{2}}roman_std ( italic_ζ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ) = square-root start_ARG over¯ start_ARG italic_ζ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - over¯ start_ARG italic_ζ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG one finds std(ζq)/ζq¯∼𝒪(exp(−N))similar-tostdsubscript𝜁𝑞¯subscript𝜁𝑞𝒪𝑁\mathrm{std}(\zeta_{q})/\overline{\zeta_{q}}\sim\mathcal{O}(\exp(-N))roman_std ( italic_ζ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ) / over¯ start_ARG italic_ζ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT end_ARG ∼ caligraphic_O ( roman_exp ( - italic_N ) ).
- A. I. Molev and N. Rozhkovskaya, J. Alg. Comb. 38, 15–35 (2012).
Collections
Sign up for free to add this paper to one or more collections.