Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Universal structure of measurement-induced information in many-body ground states (2312.11615v2)

Published 18 Dec 2023 in quant-ph, cond-mat.stat-mech, and cond-mat.str-el

Abstract: Unlike unitary dynamics, measurements of a subsystem can induce long-range entanglement via quantum teleportation. The amount of measurement-induced entanglement or mutual information depends jointly on the measurement basis and the entanglement structure of the state (before measurement), and has operational significance for whether the state is a resource for measurement-based quantum computing, as well as for the computational complexity of simulating the state using quantum or classical computers. In this work, we examine entropic measures of measurement-induced entanglement (MIE) and information (MII) for the ground-states of quantum many-body systems in one- and two- spatial dimensions. From numerical and analytic analysis of a variety of models encompassing critical points, quantum Hall states, string-net topological orders, and Fermi liquids, we identify universal features of the long-distance structure of MIE and MII that depend only on the underlying phase or critical universality class of the state. We argue that, whereas in $1d$ the leading contributions to long-range MIE and MII are universal, in $2d$, the existence of a teleportation transition for finite-depth circuits implies that trivial $2d$ states can exhibit long-range MIE, and the universal features lie in sub-leading corrections. We introduce modified MIE measures that directly extract these universal contributions. As a corollary, we show that the leading contributions to strange-correlators, used to numerically identify topological phases, are in fact non-universal in two or more dimensions, and explain how our modified constructions enable one to isolate universal components. We discuss the implications of these results for classical- and quantum- computational simulation of quantum materials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. M. B. Hastings and X.-G. Wen, Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance, Phys. Rev. B 72, 045141 (2005).
  2. L. Piroli, G. Styliaris, and J. I. Cirac, Quantum circuits assisted by local operations and classical communication: Transformations and phases of matter, Phys. Rev. Lett. 127, 220503 (2021).
  3. N. Tantivasadakarn, R. Verresen, and A. Vishwanath, Shortest route to non-abelian topological order on a quantum processor, Phys. Rev. Lett. 131, 060405 (2023b).
  4. R. Raussendorf and H. J. Briegel, A one-way quantum computer, Phys. Rev. Lett. 86, 5188 (2001).
  5. D. Gross and J. Eisert, Novel schemes for measurement-based quantum computation, Phys. Rev. Lett. 98, 220503 (2007).
  6. A. C. Doherty and S. D. Bartlett, Identifying phases of quantum many-body systems that are universal for quantum computation, Phys. Rev. Lett. 103, 020506 (2009).
  7. A. Miyake, Quantum computation on the edge of a symmetry-protected topological order, Phys. Rev. Lett. 105, 040501 (2010).
  8. F. Verstraete, M. Popp, and J. I. Cirac, Entanglement versus correlations in spin systems, Phys. Rev. Lett. 92, 027901 (2004).
  9. M. J. Bremner, C. Mora, and A. Winter, Are random pure states useful for quantum computation?, Phys. Rev. Lett. 102, 190502 (2009).
  10. D. Gross, S. T. Flammia, and J. Eisert, Most quantum states are too entangled to be useful as computational resources, Phys. Rev. Lett. 102, 190501 (2009).
  11. Y. Li, X. Chen, and M. P. A. Fisher, Quantum Zeno effect and the many-body entanglement transition, Physical Review B 98, 205136 (2018).
  12. Y. Li, X. Chen, and M. P. A. Fisher, Measurement-driven entanglement transition in hybrid quantum circuits, Phys. Rev. B 100, 134306 (2019).
  13. B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced phase transitions in the dynamics of entanglement, Phys. Rev. X 9, 031009 (2019).
  14. M. J. Gullans and D. A. Huse, Dynamical Purification Phase Transition Induced by Quantum Measurements, Physical Review X 10, 041020 (2020).
  15. Y. Bao, M. Block, and E. Altman, Finite time teleportation phase transition in random quantum circuits (2022), arXiv:2110.06963 [quant-ph] .
  16. G. Q. AI et al., Measurement-induced entanglement and teleportation on a noisy quantum processor, Nature 622, 481 (2023).
  17. A. J. Ferris and G. Vidal, Perfect sampling with unitary tensor networks, Phys. Rev. B 85, 165146 (2012).
  18. Z. Cheng and M. Ippoliti, Efficient sampling of noisy shallow circuits via monitored unraveling, PRX Quantum 4, 040326 (2023).
  19. W. Berdanier, J. Marino, and E. Altman, Universal dynamics of stochastically driven quantum impurities, Phys. Rev. Lett. 123, 230604 (2019).
  20. M. A. Rajabpour, Entanglement entropy after a partial projective measurement in 1 + 1 dimensional conformal field theories: exact results, Journal of Statistical Mechanics: Theory and Experiment 2016, 063109 (2016).
  21. P. Calabrese, J. Cardy, and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, Journal of Statistical Mechanics: Theory and Experiment 2009, P11001 (2009).
  22. D. S. Fisher, Random antiferromagnetic quantum spin chains, Phys. Rev. B 50, 3799 (1994).
  23. D. S. Fisher, Critical behavior of random transverse-field ising spin chains, Phys. Rev. B 51, 6411 (1995).
  24. G. Refael and J. E. Moore, Entanglement entropy of random quantum critical points in one dimension, Phys. Rev. Lett. 93, 260602 (2004).
  25. P. Ruggiero, V. Alba, and P. Calabrese, Entanglement negativity in random spin chains, Phys. Rev. B 94, 035152 (2016).
  26. G. Vidal, Class of quantum many-body states that can be efficiently simulated, Phys. Rev. Lett. 101, 110501 (2008).
  27. G. Evenbly and G. Vidal, Algorithms for entanglement renormalization, Phys. Rev. B 79, 144108 (2009).
  28. T. Zhou and A. Nahum, Emergent statistical mechanics of entanglement in random unitary circuits, Phys. Rev. B 99, 174205 (2019).
  29. Y. Bao, S. Choi, and E. Altman, Theory of the phase transition in random unitary circuits with measurements, Phys. Rev. B 101, 104301 (2020).
  30. A. C. Potter and R. Vasseur, Entanglement Dynamics in Hybrid Quantum Circuits, in Entanglement in Spin Chains: From Theory to Quantum Technology Applications, Quantum Science and Technology, edited by A. Bayat, S. Bose, and H. Johannesson (Cham, 2022) pp. 211–249.
  31. C. C. Wu, Ising models on hyperbolic graphs, Journal of Statistical Physics 85, 251 (1996).
  32. N. P. Breuckmann, B. Placke, and A. Roy, Critical properties of the ising model in hyperbolic space, Phys. Rev. E 101, 022124 (2020).
  33. F. Iglói and I. Peschel, On reduced density matrices for disjoint subsystems, Europhysics Letters 89, 40001 (2010).
  34. A. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303, 2–30 (2003).
  35. H. Bombin and M. A. Martin-Delgado, Family of non-abelian kitaev models on a lattice: Topological condensation and confinement, Physical Review B 78, 10.1103/physrevb.78.115421 (2008).
  36. I. Peschel and V. Eisler, Reduced density matrices and entanglement entropy in free lattice models, Journal of Physics A: Mathematical and Theoretical 42, 504003 (2009).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.