Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Diffusive Representations for Enhanced Numerical Approximation of Fractional Integrals (2312.11590v1)

Published 18 Dec 2023 in math.NA and cs.NA

Abstract: This study reexamines diffusive representations for fractional integrals with the goal of pioneering new variants of such representations. These variants aim to offer highly efficient numerical algorithms for the approximate computation of fractional integrals. The approach seamlessly aligns with established techniques used in addressing problems involving integer-order operators, contributing to a unified framework for numerical solutions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. Baffet, D. (2019). A Gauss-Jacobi kernel compression scheme for fractional differential equations. J. Sci. Comput., 79(1), 227–248.
  2. Approximation by exponential sums revisited. Appl. Comput. Harmon. Anal., 28(2), 131–149.
  3. Methods of numerical integration. Dover, Mineola, NY. Corrected reprint of the second (1984) edition.
  4. Diethelm, K. (2022). A new diffusive representation for fractional derivatives, Part II: Convergence analysis of the numerical scheme. Mathematics, 10(8), 1245.
  5. Diethelm, K. (2023a). Diffusive representations for the numerical evaluation of fractional integrals. In 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), 1–6. IEEE.
  6. Diethelm, K. (2023b). A new diffusive representation for fractional derivatives, Part I: construction, implementation and numerical examples. In A. Cardone, M. Donatelli, F. Durastante, R. Garrappa, M. Mazza, and M. Popolizio (eds.), Fractional differential equations, volume 50 of Springer INdAM Ser., 1–15. Springer, Singapore.
  7. Orthogonal polynomials for exponential weights, volume 4 of CMS Books Math./Ouvrages Math. SMC. Springer, New York.
  8. Li, J.R. (2010). A fast time stepping method for evaluating fractional integrals. SIAM J. Sci. Comput., 31(6), 4696–4714.
  9. Truncated quadrature rules over (0,∞)0(0,\infty)( 0 , ∞ ) and Nyström-type methods. SIAM J. Numer. Anal., 41, 1870–1892.
  10. McLean, W. (2018). Exponential sum approximations for t−βsuperscript𝑡𝛽t^{-\beta}italic_t start_POSTSUPERSCRIPT - italic_β end_POSTSUPERSCRIPT. In Contemporary computational mathematics—a celebration of the 80th birthday of Ian Sloan, 911–930. Springer, Cham.
  11. Montseny, G. (1998). Diffusive representation of pseudo-differential time-operators. ESAIM Proc., 5, 159–175.

Summary

We haven't generated a summary for this paper yet.