Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Path Signature Representation of Patient-Clinician Interactions as a Predictor for Neuropsychological Tests Outcomes in Children: A Proof of Concept (2312.11512v1)

Published 12 Dec 2023 in cs.HC and cs.AI

Abstract: This research report presents a proof-of-concept study on the application of machine learning techniques to video and speech data collected during diagnostic cognitive assessments of children with a neurodevelopmental disorder. The study utilised a dataset of 39 video recordings, capturing extensive sessions where clinicians administered, among other things, four cognitive assessment tests. From the first 40 minutes of each clinical session, covering the administration of the Wechsler Intelligence Scale for Children (WISC-V), we extracted head positions and speech turns of both clinician and child. Despite the limited sample size and heterogeneous recording styles, the analysis successfully extracted path signatures as features from the recorded data, focusing on patient-clinician interactions. Importantly, these features quantify the interpersonal dynamics of the assessment process (dialogue and movement patterns). Results suggest that these features exhibit promising potential for predicting all cognitive tests scores of the entire session length and for prototyping a predictive model as a clinical decision support tool. Overall, this proof of concept demonstrates the feasibility of leveraging machine learning techniques for clinical video and speech data analysis in order to potentially enhance the efficiency of cognitive assessments for neurodevelopmental disorders in children.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. M. J. Maenner, K. A. Shaw, J. Baio, A. Washington, M. Patrick, M. DiRienzo, D. L. Christensen, L. D. Wiggins, S. Pettygrove, J. G. Andrews et al., “Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, united states, 2016,” MMWR Surveillance summaries, vol. 69, no. 4, p. 1, 2020.
  2. S. McCarthy, L. Wilton, M. L. Murray, P. Hodgkins, P. Asherson, and I. C. Wong, “The epidemiology of pharmacologically treated attention deficit hyperactivity disorder (adhd) in children, adolescents and adults in uk primary care,” BMC pediatrics, vol. 12, pp. 1–11, 2012.
  3. A. Topping, “Adhd services ‘swamped’, say experts as more uk women seek diagnosis,” The Guardian, 2023. [Online]. Available: https://www.theguardian.com/society/2023/jan/13/adhd-services-swamped-say-experts-as-more-uk-women-seek-diagnosis
  4. M.-R. Mohammadi, H. Zarafshan, A. Khaleghi, N. Ahmadi, Z. Hooshyari, S.-A. Mostafavi, A. Ahmadi, S.-S. Alavi, A. Shakiba, and M. Salmanian, “Prevalence of adhd and its comorbidities in a population-based sample,” Journal of Attention Disorders, vol. 25, no. 8, pp. 1058–1067, 2021.
  5. A. Angold, E. J. Costello, and A. Erkanli, “Comorbidity,” The Journal of Child Psychology and Psychiatry and Allied Disciplines, vol. 40, no. 1, pp. 57–87, 1999.
  6. C. Nash, R. Nair, and S. M. Naqvi, “Machine learning and adhd mental health detection-a short survey,” in 2022 25th International Conference on Information Fusion (FUSION).   IEEE, 2022, pp. 1–8.
  7. S. M. Kanne, L. A. Carpenter, and Z. Warren, “Screening in toddlers and preschoolers at risk for autism spectrum disorder: Evaluating a novel mobile-health screening tool,” Autism Research, vol. 11, no. 7, pp. 1038–1049, 2018.
  8. M. Duda, N. Haber, J. Daniels, and D. Wall, “Crowdsourced validation of a machine-learning classification system for autism and adhd,” Translational psychiatry, vol. 7, no. 5, pp. e1133–e1133, 2017.
  9. C. Park, M. D. Rouzi, M. M. U. Atique, M. Finco, R. K. Mishra, G. Barba-Villalobos, E. Crossman, C. Amushie, J. Nguyen, C. Calarge et al., “Machine learning-based aggression detection in children with adhd using sensor-based physical activity monitoring,” Sensors, vol. 23, no. 10, p. 4949, 2023.
  10. W. Das and S. Khanna, “A robust machine learning based framework for the automated detection of adhd using pupillometric biomarkers and time series analysis,” Scientific reports, vol. 11, no. 1, p. 16370, 2021.
  11. A. Rybner, E. T. Jessen, M. D. Mortensen, S. N. Larsen, R. Grossman, N. Bilenberg, C. Cantio, J. R. M. Jepsen, E. Weed, A. Simonsen et al., “Vocal markers of autism: Assessing the generalizability of machine learning models,” Autism Research, vol. 15, no. 6, pp. 1018–1030, 2022.
  12. A. L. Georgescu, J. C. Koehler, J. Weiske, K. Vogeley, N. Koutsouleris, and C. Falter-Wagner, “Machine learning to study social interaction difficulties in asd,” Frontiers in Robotics and AI, vol. 6, p. 132, 2019.
  13. T. Lyons and A. D. McLeod, “Signature methods in machine learning,” arXiv preprint arXiv:2206.14674, 2022.
  14. V. H. Buch, I. Ahmed, and M. Maruthappu, “Artificial intelligence in medicine: current trends and future possibilities,” British Journal of General Practice, vol. 68, no. 668, pp. 143–144, 2018.
  15. A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and I. Sutskever, “Robust speech recognition via large-scale weak supervision,” in International Conference on Machine Learning.   PMLR, 2023, pp. 28 492–28 518.
  16. H. Bredin, R. Yin, J. M. Coria, G. Gelly, P. Korshunov, M. Lavechin, D. Fustes, H. Titeux, W. Bouaziz, and M.-P. Gill, “pyannote.audio: neural building blocks for speaker diarization,” in ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing, 2020.
  17. H. Bredin and A. Laurent, “End-to-end speaker segmentation for overlap-aware resegmentation,” in Proc. Interspeech 2021, 2021.
  18. I. Chevyrev and A. Kormilitzin, “A primer on the signature method in machine learning,” arXiv preprint arXiv:1603.03788, 2016.
  19. P. Bonnier, P. Kidger, I. P. Arribas, C. Salvi, and T. Lyons, “Deep signature transforms,” arXiv preprint arXiv:1905.08494, 2019.
  20. T. Lyons, “esig python package,” 2017. [Online]. Available: https://esig.readthedocs.io/
  21. S. Jaiswal, M. F. Valstar, A. Gillott, and D. Daley, “Automatic detection of adhd and asd from expressive behaviour in rgbd data,” in 2017 12th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017), 2017, pp. 762–769.
  22. O. Celiktutan, W. Wu, K. Vogeley, and A. L. Georgescu, “A computational approach for analysing autistic behaviour during dyadic interactions,” in International Conference on Pattern Recognition.   Springer, 2022, pp. 167–177.
  23. H.-M. Wu, “Kernel sliced inverse regression with applications to classification,” Journal of Computational and Graphical Statistics, vol. 17, no. 3, pp. 590–610, 2008.
  24. C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector machines,” ACM transactions on intelligent systems and technology (TIST), vol. 2, no. 3, pp. 1–27, 2011.
  25. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
  26. A. L. Fernández and J. Abe, “Bias in cross-cultural neuropsychological testing: problems and possible solutions,” Culture and Brain, vol. 6, pp. 1–35, 2018.
  27. J. C. Koehler, A. L. Georgescu, J. Weiske, M. Spangemacher, L. Burghof, P. Falkai, N. Koutsouleris, W. Tschacher, K. Vogeley, and C. M. Falter-Wagner, “Brief report: Specificity of interpersonal synchrony deficits to autism spectrum disorder and its potential for digitally assisted diagnostics,” Journal of autism and developmental disorders, vol. 52, no. 8, pp. 3718–3726, 2022.
Citations (1)

Summary

We haven't generated a summary for this paper yet.