Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Agglomerative Federated Learning: Empowering Larger Model Training via End-Edge-Cloud Collaboration (2312.11489v3)

Published 1 Dec 2023 in cs.DC and cs.LG

Abstract: Federated Learning (FL) enables training AI models over end devices without compromising their privacy. As computing tasks are increasingly performed by a combination of cloud, edge, and end devices, FL can benefit from this End-Edge-Cloud Collaboration (EECC) paradigm to achieve collaborative device-scale expansion with real-time access. Although Hierarchical Federated Learning (HFL) supports multi-tier model aggregation suitable for EECC, prior works assume the same model structure on all computing nodes, constraining the model scale by the weakest end devices. To address this issue, we propose Agglomerative Federated Learning (FedAgg), which is a novel EECC-empowered FL framework that allows the trained models from end, edge, to cloud to grow larger in size and stronger in generalization ability. FedAgg recursively organizes computing nodes among all tiers based on Bridge Sample Based Online Distillation Protocol (BSBODP), which enables every pair of parent-child computing nodes to mutually transfer and distill knowledge extracted from generated bridge samples. This design enhances the performance by exploiting the potential of larger models, with privacy constraints of FL and flexibility requirements of EECC both satisfied. Experiments under various settings demonstrate that FedAgg outperforms state-of-the-art methods by an average of 4.53\% accuracy gains and remarkable improvements in convergence rate.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., “Advances and open problems in federated learning,” Foundations and Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.
  2. Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning: Concept and applications,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.
  3. D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and H. V. Poor, “Federated learning for internet of things: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp. 1622–1658, 2021.
  4. T. Zhang, L. Gao, C. He, M. Zhang, B. Krishnamachari, and A. S. Avestimehr, “Federated learning for the internet of things: Applications, challenges, and opportunities,” IEEE Internet of Things Magazine, vol. 5, no. 1, pp. 24–29, 2022.
  5. S. Duan, D. Wang, J. Ren, F. Lyu, Y. Zhang, H. Wu, and X. Shen, “Distributed artificial intelligence empowered by end-edge-cloud computing: A survey,” IEEE Communications Surveys & Tutorials, 2022.
  6. G. Bao and P. Guo, “Federated learning in cloud-edge collaborative architecture: key technologies, applications and challenges,” Journal of Cloud Computing, vol. 11, no. 1, p. 94, 2022.
  7. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Artificial intelligence and statistics.   PMLR, 2017, pp. 1273–1282.
  8. T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated optimization in heterogeneous networks,” Proceedings of Machine Learning and Systems, vol. 2, pp. 429–450, 2020.
  9. S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh, “Scaffold: Stochastic controlled averaging for federated learning,” in International Conference on Machine Learning.   PMLR, 2020, pp. 5132–5143.
  10. L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud hierarchical federated learning,” in ICC 2020-2020 IEEE International Conference on Communications (ICC).   IEEE, 2020, pp. 1–6.
  11. A. Tak and S. Cherkaoui, “Federated edge learning: Design issues and challenges,” IEEE Network, vol. 35, no. 2, pp. 252–258, 2020.
  12. Z. Wang, H. Xu, J. Liu, Y. Xu, H. Huang, and Y. Zhao, “Accelerating federated learning with cluster construction and hierarchical aggregation,” IEEE Transactions on Mobile Computing, 2022.
  13. Z. Wang, H. Xu, J. Liu, H. Huang, C. Qiao, and Y. Zhao, “Resource-efficient federated learning with hierarchical aggregation in edge computing,” in IEEE INFOCOM 2021-IEEE Conference on Computer Communications.   IEEE, 2021, pp. 1–10.
  14. C. Feng, H. H. Yang, D. Hu, Z. Zhao, T. Q. Quek, and G. Min, “Mobility-aware cluster federated learning in hierarchical wireless networks,” IEEE Transactions on Wireless Communications, vol. 21, no. 10, pp. 8441–8458, 2022.
  15. A. Afonin and S. P. Karimireddy, “Towards model agnostic federated learning using knowledge distillation,” CoRR, vol. abs/2110.15210, 2021. [Online]. Available: https://arxiv.org/abs/2110.15210
  16. M. N. Nguyen, S. R. Pandey, T. N. Dang, E.-N. Huh, N. H. Tran, W. Saad, and C. S. Hong, “Self-organizing democratized learning: Toward large-scale distributed learning systems,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  17. M. N. Nguyen, S. R. Pandey, K. Thar, N. H. Tran, M. Chen, W. S. Bradley, and C. S. Hong, “Distributed and democratized learning: Philosophy and research challenges,” IEEE Computational Intelligence Magazine, vol. 16, no. 1, pp. 49–62, 2021.
  18. X. Hu, L. Chu, J. Pei, W. Liu, and J. Bian, “Model complexity of deep learning: A survey,” Knowledge and Information Systems, vol. 63, pp. 2585–2619, 2021.
  19. S. Alam, L. Liu, M. Yan, and M. Zhang, “Fedrolex: Model-heterogeneous federated learning with rolling sub-model extraction,” in Conference on Neural Information Processing Systems (NeurIPS), 2022.
  20. Q. Nguyen, H. H. Pham, K.-S. Wong, P. Le Nguyen, T. T. Nguyen, and M. N. Do, “Feddct: Federated learning of large convolutional neural networks on resource constrained devices using divide and collaborative training,” IEEE Transactions on Network and Service Management, 2023.
  21. Y. J. Cho, A. Manoel, G. Joshi, R. Sim, and D. Dimitriadis, “Heterogeneous ensemble knowledge transfer for training large models in federated learning,” in Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, L. D. Raedt, Ed.   International Joint Conferences on Artificial Intelligence Organization, 7 2022, pp. 2881–2887, main Track. [Online]. Available: https://doi.org/10.24963/ijcai.2022/399
  22. C. He, M. Annavaram, and S. Avestimehr, “Group knowledge transfer: Federated learning of large cnns at the edge,” Advances in Neural Information Processing Systems, vol. 33, pp. 14 068–14 080, 2020.
  23. S. Cheng, J. Wu, Y. Xiao, and Y. Liu, “Fedgems: Federated learning of larger server models via selective knowledge fusion,” arXiv preprint arXiv:2110.11027, 2021.
  24. Z. Wu, S. Sun, M. Liu, J. Zhang, Y. Wang, and Q. Liu, “Exploring the distributed knowledge congruence in proxy-data-free federated distillation,” arXiv preprint arXiv:2204.07028, 2022.
  25. R. Anil, G. Pereyra, A. Passos, R. Ormandi, G. E. Dahl, and G. E. Hinton, “Large scale distributed neural network training through online distillation,” arXiv preprint arXiv:1804.03235, 2018.
  26. L. Wang and K.-J. Yoon, “Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
  27. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition.   Ieee, 2009, pp. 248–255.
  28. C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang, P. Vepakomma, A. Singh, H. Qiu et al., “Fedml: A research library and benchmark for federated machine learning,” arXiv preprint arXiv:2007.13518, 2020.
  29. A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,” 2009.
  30. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Zhiyuan Wu (34 papers)
  2. Sheng Sun (46 papers)
  3. Yuwei Wang (60 papers)
  4. Min Liu (236 papers)
  5. Bo Gao (103 papers)
  6. Quyang Pan (5 papers)
  7. Tianliu He (3 papers)
  8. Xuefeng Jiang (29 papers)
Citations (7)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets