Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WiSegRT: Dataset for Site-Specific Indoor Radio Propagation Modeling with 3D Segmentation and Differentiable Ray-Tracing (2312.11245v2)

Published 18 Dec 2023 in cs.IT and math.IT

Abstract: The accurate modeling of indoor radio propagation is crucial for localization, monitoring, and device coordination, yet remains a formidable challenge, due to the complex nature of indoor environments where radio can propagate along hundreds of paths. These paths are resulted from the room layout, furniture, appliances and even small objects like a glass cup. They are also influenced by the object material and surface roughness. Advanced ML techniques have the potential to take such non-linear and hard-to-model factors into consideration. However, extensive and fine-grained datasets are urgently required. This paper presents WiSegRT, an open-source dataset for indoor radio propagation modeling. Generated by a differentiable ray tracer within the segmented 3-dimensional (3D) indoor environments, WiSegRT provides site-specific channel impulse responses for each grid point relative to the given transmitter location. We expect WiSegRT to support a wide-range of applications, such as ML-based channel prediction, accurate indoor localization, radio-based object detection, wireless digital twin, and more.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6g and beyond,” IEEE journal on selected areas in communications, vol. 40, no. 6, pp. 1728–1767, 2022.
  2. Y. Liu, X. Liu, X. Mu, T. Hou, J. Xu, M. Di Renzo, and N. Al-Dhahir, “Reconfigurable intelligent surfaces: Principles and opportunities,” IEEE communications surveys & tutorials, vol. 23, no. 3, pp. 1546–1577, 2021.
  3. L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of massive mimo: Benefits and challenges,” IEEE journal of selected topics in signal processing, vol. 8, no. 5, pp. 742–758, 2014.
  4. S. Bakirtzis, J. Chen, K. Qiu, J. Zhang, and I. Wassell, “Em deepray: an expedient, generalizable, and realistic data-driven indoor propagation model,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 6, pp. 4140–4154, 2022.
  5. R. Levie, Ç. Yapar, G. Kutyniok, and G. Caire, “Radiounet: Fast radio map estimation with convolutional neural networks,” IEEE Transactions on Wireless Communications, vol. 20, no. 6, pp. 4001–4015, 2021.
  6. A. Seretis and C. D. Sarris, “Toward physics-based generalizable convolutional neural network models for indoor propagation,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 6, pp. 4112–4126, 2022.
  7. T. Kocevska, T. Javornik, A. Švigelj, A. Rashkovska, and A. Hrovat, “Identification of indoor radio environment properties from channel impulse response with machine learning models,” Electronics, vol. 12, no. 12, p. 2746, 2023.
  8. T. Orekondy, P. Kumar, S. Kadambi, H. Ye, J. Soriaga, and A. Behboodi, “Winert: Towards neural ray tracing for wireless channel modelling and differentiable simulations,” in The Eleventh International Conference on Learning Representations, 2022.
  9. A. Kamari, Y. Chae, and P. Pathak, “mmsv: mmwave vehicular networking using street view imagery in urban environments,” in Proceedings of the 29th Annual International Conference on Mobile Computing and Networking, 2023, pp. 1–16.
  10. M. Alrabeiah, A. Hredzak, Z. Liu, and A. Alkhateeb, “Viwi: A deep learning dataset framework for vision-aided wireless communications,” in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring).   IEEE, 2020, pp. 1–5.
  11. Y. Zhang, J. Sun, G. Gui, H. Gacanin, and H. Sari, “A generalized channel dataset generator for 5g new radio systems based on ray-tracing,” IEEE Wireless Communications Letters, vol. 10, no. 11, pp. 2402–2406, 2021.
  12. J. Hoydis, S. Cammerer, F. A. Aoudia, A. Vem, N. Binder, G. Marcus, and A. Keller, “Sionna: An open-source library for next-generation physical layer research,” arXiv preprint arXiv:2203.11854, 2022.
Citations (3)

Summary

We haven't generated a summary for this paper yet.