Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information Inequalities via Ideas from Additive Combinatorics (2312.11017v3)

Published 18 Dec 2023 in cs.IT, math.CO, math.IT, and math.NT

Abstract: Ruzsa's equivalence theorem provided a framework for converting certain families of inequalities in additive combinatorics to entropic inequalities (which sometimes did not possess stand-alone entropic proofs). In this work, we first establish formal equivalences between some families (different from Ruzsa) of inequalities in additive combinatorics and entropic ones. As a first step to further these equivalences, we establish an information-theoretic characterization of the magnification ratio that could also be of independent interest.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. I. Z. Ruzsa, “Sumsets and entropy,” Random Structures & Algorithms, vol. 34, no. 1, pp. 1–10, 2009.
  2. T. Tao, “Sumset and inverse sumset theory for Shannon entropy,” Combinatorics, Probability and Computing, vol. 19, no. 4, pp. 603–639, 2010.
  3. M. Madiman, A. W. Marcus, and P. Tetali, “Entropy and set cardinality inequalities for partition-determined functions,” Random Structures & Algorithms, vol. 40, no. 4, pp. 399–424, 2012.
  4. I. Kontoyiannis and M. Madiman, “Sumset and inverse sumset inequalities for differential entropy and mutual information,” IEEE transactions on information theory, vol. 60, no. 8, pp. 4503–4514, 2014.
  5. M. Madiman, “On the entropy of sums,” in 2008 IEEE Information Theory Workshop, pp. 303–307, IEEE, 2008.
  6. A. Lapidoth and G. Pete, “On the entropy of the sum and of the difference of independent random variables,” in 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel, pp. 623–625, IEEE, 2008.
  7. M. Madiman and I. Kontoyiannis, “The entropies of the sum and the difference of two iid random variables are not too different,” in 2010 IEEE International Symposium on Information Theory, pp. 1369–1372, IEEE, 2010.
  8. A. Espuny Díaz, “Entropy methods for sumset inequalities,” Master’s thesis, Universitat Politècnica de Catalunya, 2016.
  9. I. Z. Ruzsa, “Sumsets and structure,” Combinatorial number theory and additive group theory, pp. 87–210, 2009.
  10. I. Csiszár and J. Körner, Information theory: Coding theorems for discrete memoryless systems. Cambridge University Press, 1 2011.
  11. I. Z. Ruzsa, “Sums of finite sets, number theory (new york, 1991–1995), 281–293,” 1996.
  12. B. Green, F. Manners, and T. Tao, “Sumsets and entropy revisited,” arXiv:2306.13403, 2023.
  13. N. H. Katz and T. Tao, “Bounds on arithmetic projections, and applications to the Kakeya conjecture,” Mathematical Research Letters, vol. 6, no. 6, pp. 625–630, 1999.
  14. Z. Zhang and R. Yeung, “On characterization of entropy function via information inequalities,” IEEE Transactions on Information Theory, vol. 44, pp. 1440–1452, July 1998.
  15. “Deleted scenes: entropy sumset estimates.” https://terrytao.wordpress.com/books/additive-combinatorics/.
  16. B. Green, “Additive combinatorics - chapter 2,” 2009.
  17. C. W. Ken Lau and C. Nair, “Information inequalities via ideas from additive combinatorics,” in 2023 IEEE International Symposium on Information Theory (ISIT), pp. 2452–2457, 2023.
  18. W. Gowers, B. Green, F. Manners, and T. Tao, “On a conjecture of marton,” arXiv preprint arXiv:2311.05762, 2023.

Summary

We haven't generated a summary for this paper yet.