Theoretical Aspects of Generating Instances with Unique Solutions: Pre-assignment Models for Unique Vertex Cover (2312.10599v1)
Abstract: The uniqueness of an optimal solution to a combinatorial optimization problem attracts many fields of researchers' attention because it has a wide range of applications, it is related to important classes in computational complexity, and an instance with only one solution is often critical for algorithm designs in theory. However, as the authors know, there is no major benchmark set consisting of only instances with unique solutions, and no algorithm generating instances with unique solutions is known; a systematic approach to getting a problem instance guaranteed having a unique solution would be helpful. A possible approach is as follows: Given a problem instance, we specify a small part of a solution in advance so that only one optimal solution meets the specification. This paper formulates such a ``pre-assignment'' approach for the vertex cover problem as a typical combinatorial optimization problem and discusses its computational complexity. First, we show that the problem is $\SigmaP_2$-complete in general, while the problem becomes NP-complete when an input graph is bipartite. We then present an $O(2.1996n)$-time algorithm for general graphs and an $O(1.9181n)$-time algorithm for bipartite graphs, where $n$ is the number of vertices. The latter is based on an FPT algorithm with $O*(3.6791{\tau})$ time for vertex cover number $\tau$. Furthermore, we show that the problem for trees can be solved in $O(1.4143n)$ time.
- Random generation of test instances with controlled attributes. In David S. Johnson and Michael A. Trick, editors, Cliques, Coloring, and Satisfiability, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, October 11-13, 1993, volume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 377–393. DIMACS/AMS, 1996. doi:10.1090/dimacs/026/18.
- Uci machine learning repository, 2007.
- On the unique satisfiability problem. Information and Control, 55(1):80–88, 1982. doi:https://doi.org/10.1016/S0019-9958(82)90439-9.
- Exact algorithms for kayles. Theor. Comput. Sci., 562:165–176, 2015. doi:10.1016/j.tcs.2014.09.042.
- Performance test of local search algorithms using new types of random CNF formulas. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes, pages 304–311. Morgan Kaufmann, 1995. URL: http://ijcai.org/Proceedings/95-1/Papers/040.pdf.
- Improved upper bounds for vertex cover. Theor. Comput. Sci., 411(40-42):3736–3756, 2010. doi:10.1016/j.tcs.2010.06.026.
- Clustering and domination in perfect graphs. Discret. Appl. Math., 9(1):27–39, 1984. doi:10.1016/0166-218X(84)90088-X.
- Linear-time algorithm for sliding tokens on trees. Theor. Comput. Sci., 600:132–142, 2015. doi:10.1016/j.tcs.2015.07.037.
- The fewest clues problem. Theor. Comput. Sci., 748:28–39, 2018. doi:10.1016/j.tcs.2018.01.020.
- Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012.
- DIMACS. Dimacs implementation challenges. http://dimacs.rutgers.edu/programs/challenge/, 2022. Accessed: 2023-08-15.
- Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.
- Exact Exponential Algorithms. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2010. doi:10.1007/978-3-642-16533-7.
- All paths lead to rome. CoRR, abs/2207.09439, 2022. doi:10.48550/arXiv.2207.09439.
- NP-completeness of fill-a-pix and Σ2PsuperscriptsubscriptΣ2𝑃{\Sigma}_{2}^{P}roman_Σ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_P end_POSTSUPERSCRIPT-completeness of its fewest clues problem. IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 102-A(11):1490–1496, 2019. doi:10.1587/transfun.E102.A.1490.
- Satlib: An online resource for research on sat. Sat, 2000:283–292, 2000.
- An n5/2superscript𝑛52n^{5/2}italic_n start_POSTSUPERSCRIPT 5 / 2 end_POSTSUPERSCRIPT algorithm for maximum matchings in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. doi:10.1137/0202019.
- Hard instance generation for SAT (extended abstract). In Hon Wai Leong, Hiroshi Imai, and Sanjay Jain, editors, Algorithms and Computation, 8th International Symposium, ISAAC ’97, Singapore, December 17-19, 1997, Proceedings, volume 1350 of Lecture Notes in Computer Science, pages 22–31. Springer, 1997. doi:10.1007/3-540-63890-3_4.
- Complexity of unique (optimal) solutions in graphs: Vertex cover and domination. J. Comb. Math. Comb. Comput., 110:217–240, 2019.
- Unique (optimal) solutions: Complexity results for identifying and locating-dominating codes. Theor. Comput. Sci., 767:83–102, 2019. doi:10.1016/j.tcs.2018.09.034.
- Laurent Juban. Dichotomy theorem for the generalized unique satisfiability problem. In Gabriel Ciobanu and Gheorghe Paun, editors, Fundamentals of Computation Theory, 12th International Symposium, FCT ’99, Iasi, Romania, August 30 - September 3, 1999, Proceedings, volume 1684 of Lecture Notes in Computer Science, pages 327–337. Springer, 1999. doi:10.1007/3-540-48321-7_27.
- Solving random satisfiable 3cnf formulas in expected polynomial time. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 454–463. ACM Press, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109608.
- Hardness of instance generation with optimal solutions for the stable marriage problem. J. Inf. Process., 29:166–173, 2021. doi:10.2197/ipsjjip.29.166.
- When subgraph isomorphism is really hard, and why this matters for graph databases. J. Artif. Intell. Res., 61:723–759, 2018. doi:10.1613/jair.5768.
- Matching is as easy as matrix inversion. Comb., 7(1):105–113, 1987. doi:10.1007/BF02579206.
- Benchmark graphs for practical graph isomorphism. In Kirk Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 60:1–60:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.60.
- Christos H. Papadimitriou. On the complexity of unique solutions. J. ACM, 31(2):392–400, 1984. doi:10.1145/62.322435.
- Gerhard Reinelt. TSPLIB - A traveling salesman problem library. INFORMS J. Comput., 3(4):376–384, 1991. doi:10.1287/ijoc.3.4.376.
- Laura A. Sanchis. On the complexity of test case generation for np-hard problems. Inf. Process. Lett., 36(3):135–140, 1990. doi:10.1016/0020-0190(90)90082-9.
- Laura A. Sanchis. Generating hard and diverse test sets for NP-hard graph problems. Discret. Appl. Math., 58(1):35–66, 1995. doi:10.1016/0166-218X(93)E0140-T.
- Dominik Scheder. PPSZ is better than you think. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 205–216. IEEE, 2022. doi:10.1109/FOCS52979.2021.00028.
- A generic problem instance generator for discrete optimization problems. In Hernán E. Aguirre and Keiki Takadama, editors, Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2018, Kyoto, Japan, July 15-19, 2018, pages 1761–1768. ACM, 2018. doi:10.1145/3205651.3208284.
- NP is as easy as detecting unique solutions. Theor. Comput. Sci., 47(3):85–93, 1986. doi:10.1016/0304-3975(86)90135-0.
- Exact algorithms for maximum independent set. Inf. Comput., 255:126–146, 2017. doi:10.1016/j.ic.2017.06.001.
- Winner determination algorithms for graph games with matching structures. In Combinatorial Algorithms: 33rd International Workshop, IWOCA 2022, Trier, Germany, June 7–9, 2022, Proceedings, pages 509–522. Springer, 2022.