Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Reliable Participation in UAV-Enabled Federated Edge Learning on Non-IID Data (2312.10411v1)

Published 16 Dec 2023 in cs.LG, cs.AI, cs.CR, and cs.DC

Abstract: Federated Learning (FL) is a decentralized ML technique that allows a number of participants to train an ML model collaboratively without having to share their private local datasets with others. When participants are unmanned aerial vehicles (UAVs), UAV-enabled FL would experience heterogeneity due to the majorly skewed (non-independent and identically distributed -IID) collected data. In addition, UAVs may demonstrate unintentional misbehavior in which the latter may fail to send updates to the FL server due, for instance, to UAVs' disconnectivity from the FL system caused by high mobility, unavailability, or battery depletion. Such challenges may significantly affect the convergence of the FL model. A recent way to tackle these challenges is client selection, based on customized criteria that consider UAV computing power and energy consumption. However, most existing client selection schemes neglected the participants' reliability. Indeed, FL can be targeted by poisoning attacks, in which malicious UAVs upload poisonous local models to the FL server, by either providing targeted false predictions for specifically chosen inputs or by compromising the global model's accuracy through tampering with the local model. Hence, we propose in this paper a novel client selection scheme that enhances convergence by prioritizing fast UAVs with high-reliability scores, while eliminating malicious UAVs from training. Through experiments, we assess the effectiveness of our scheme in resisting different attack scenarios, in terms of convergence and achieved model accuracy. Finally, we demonstrate the performance superiority of the proposed approach compared to baseline methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Youssra Cheriguene (2 papers)
  2. Wael Jaafar (35 papers)
  3. Halim Yanikomeroglu (233 papers)
  4. Chaker Abdelaziz Kerrache (4 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.